现在各行各业可是都掀起了一股python学习的热潮,几乎每位职场人士都在学习和使用python。python大家都很熟悉了,共享经济大家也都知道,可是python运用了共享经济这件事你了解吗?想知道的话,就来看小编今天跟大家分享的这篇“Python 为了提升性能,竟运用了共享经济”的文章吧。
以下文章来源:微信公众号Python猫
作者:豌豆花下猫
大家或许知道,Python 为了提高内存的利用效率,采用了一套共用对象内存的分配策略。
例如,对于那些数值较小的数字对象([-5, 256])、布尔值对象、None 对象、较短的字符串对象(通常是 20)等等,字面量相等的对象实际上是同一个对象。
# 共用内存地址的例子 a = 100 b = 100 s = "python_cat" t = "python_cat" id(a) == id(b) # 结果:True id(s) == id(t) # 结果:True
我很早的时候曾写过一篇《Python中的“特权种族”是什么?》,把这些对象统称为“特权种族”,它们是 Python 在内存管理机制上使用的优化技巧。
前不久,我还写了一篇《Python 内存分配时的小秘密》,也是介绍内存管理的技巧。
这两篇文章有所区别:旧文主要涉及了内存共用与对象驻留的机制,而新文介绍的是内存分配、动态扩容以及内存回收的相关机制。
它们令我不由自主地想到两个词:共享经济与供需平衡。
如果你没有读过那两篇文章,我强烈建议你先回看一下,然后再看看我的联想是否有道理:那几类特权种族对象其实是在共享内存,表面上的不同对象,其实是在循环利用;至于供需平衡也好理解,创建某些对象时,按照预期的诉求去分配内存,在扩容时则灵活调节,达到了供需之间的平衡。
透过现象看本质,Python 可以很有趣。
但是,Python 的有趣之处还不止于此,本文要继续分享另一种内存管理机制,在某种程度上,它实现了共享经济与供需平衡的融合,我们从中可揭开 Python 的另一重身份……
上面列出的"特权种族"都是不可变对象(而“供需平衡”主要出现于可变对象),对于这些不变的对象,当出现多处使用时,共用一个对象似乎是种不错的优化方法。
我曾有一种猜想:Python 的不可变对象都可能是特权种族。
我没有试图去完全证实它,本文只想考察其中一种不可变对象:元组。它是不可变对象,那么,是否有共用对象的机制呢?
下面把它跟列表作一下对比:
# 空对象的差别 a = [] b = [] c = () d = () print(id(a)==id(b)) # 结果:False print(id(c)==id(d)) # 结果:True
由此可见,两个空列表是不同的对象,而两个空元组其实是同一个对象。这至少说明了,空元组在内存中只有一个,它属于已提到的特权种族。
将实验延伸到集合与字典,它们是可变对象,你会发现结果跟列表一样,存在多个副本,即不是特权种族。我就不举例了。
由上述的实验结果,还能引出两个问题,但是它们偏离了本文主题,我不打算深入辨析,简单列一下:
空元组体现了共享经济,但由于它是不可变对象,所以不存在动态扩容,就只体现了极少的供需平衡。
作为对照,列表等可变对象充分表现了供需平衡,却似乎没办法体现共享经济。
比如说,我们把一个列表想象成一个可自增的杯子(毕竟它是某种容器),再把它的元素想象成不同种类的液体(水、可乐、酒……)。
那么,我们的问题是:两杯东西是否可以共享为一个对象呢?或者说,有没有可能共享那只杯子呢?这样就可以节省内存(在那篇讲小秘密的文章中展示过:“空杯子”占用的内存可不少),提升效率啦。
对于第一个问题,答案为否,验证过程略。对于第二个问题,在上一节中,我们已验证过两个空杯子(即空列表),答案也为否。
但是,第二个问题还有其它的可能!下面让我们换一种实验方法:
# 实验版本:Python 3.6.1 a = [[] for i in range(4)] print(id(a)) for i in range(len(a)): print(f'{i} -- {id(a[i])}') # a[i] = 1 # PS:可去除注释,再执行一次,结果的顺序有差别 del a print("after del") b = [[] for i in range(4)] print(id(b)) for i in range(len(b)): print(f'{i} -- {id(b[i])}')
以上代码在不同环境中,执行结果可能有所差异。我执行的一次结果如下:
2012909395656 0 -- 2012909395272 1 -- 2012909406472 2 -- 2012909395208 3 -- 2012909395144 after del 2012909395656 0 -- 2012909395272 1 -- 2012909406472 2 -- 2012909395208 3 -- 2012909395144
分析结果可知:列表对象在被回收之后,并不会彻底消除,它的内存地址会传递给新创建的列表,也就是说,新创建的列表其实共享了旧列表的内存地址!
再结合前面的例子,我们可以说,先后静态创建的两个列表会分配不同的内存地址,但是,经过动态回收之后,先后创建的列表可能是同一个内存地址!(注意:这里说的是“可能”,因为在新列表创建前,若有其它地方也在创建列表,那后者可能夺去先机。)
延伸到其它基本的可变对象,例如集合与字典,也有同样的共享策略,其目的显而易见:循环利用这些对象的“残躯”,可以避免内存碎片,提高执行性能。
共享一只杯子,总比重新创造一只杯子,要更高效便捷,对吧?
Python 解释器在实现这个机制时,使用了一个叫做free_list的全局变量,其工作原理是:
图片来源:https://dwz.cn/QWD6RxOx
好了,现在我们可以说,列表、集合与字典这些可变对象,它们都不是前文所说的特权种族,但是,在它们背后都藏着循环使用的共享思想,这一点却是相通的。
Python 解释器在内存管理上真是煞费苦心啊,在那些司空见惯的基本对象上,它施加了诸多的小魔法,在我们毫不觉察的时候,它们有条不紊地运作,而当我们终于见识清楚后,就不得不感叹它的精妙了。
Python 算是一个精打细算的“经济学家”了。
回顾全文,最后作一个小结:
数据分析咨询请扫描二维码
人工智能(AI)正迅速成为现代科技的核心,推动着各行各业的革新与发展。大学人工智能专业的学习内容非常广泛,涵盖了计算机科学 ...
2024-09-20数据分析师考证:CDA认证的全面指南 数据分析在现代商业和科技领域中的重要性日益增加,越来越多的企业依赖数据驱动决策来提升竞 ...
2024-09-20网络爬虫(Web Crawler),也被称为网络蜘蛛、网络机器人或网页抓取器,是一种自动化程序或脚本,用于在互联网上自动抓取和收集 ...
2024-09-20数据分析是现代商业和科学研究中不可或缺的一部分。Python凭借其强大的库和易用性,成为数据分析领域的首选编程语言。本文将深入 ...
2024-09-20数据分析师是一个需要多方面技能和特质的职业,适合做数据分析师的人通常具备以下特质和技能: 对数据有浓厚兴趣:数据爱好者, ...
2024-09-20CDA证书的考试内容涵盖了多个模块,具体包括: 数据分析概述与职业操守:包括数据分析的基本概念、方法论、角色,数据分析师的 ...
2024-09-20数字化转型的核心在于利用数字技术来推动企业或组织在业务模式、流程、文化和价值链等方面的根本性变革,以提高效率、创造新的增 ...
2024-09-20作为一名资深数据分析师,拥有CDA证书可以显著提升你的职业竞争力,并为你带来更多的职业发展机会。CDA证书在金融、电信、零售、 ...
2024-09-20数据分析师的月薪因地区、经验、技能和行业而异。根据2024年的数据,数据分析师在中国的平均月薪约为11,910元,但这个数字可能因 ...
2024-09-20CDA证书在统计学领域的应用非常广泛,特别是在数据分析和业务决策中。以下是CDA Level II级别中一些与统计学相关的应用: 数据 ...
2024-09-20统计学结合CDA证书可以为就业提供多样化的方向和广阔的前景。以下是一些主要的就业方向: 政府部门:统计学专业毕业生可以在政 ...
2024-09-20CDA认证分为三个级别,每个级别对应不同的数据分析技能: CDA Level I:这是入门级别,主要面向零基础就业转行者、应届毕业生以 ...
2024-09-20在职场中,将CDA(Certified Data Analyst)证书转化为实际的业务成果和价值,可以通过以下几个步骤实现: 提升专业技能:CDA证 ...
2024-09-20考取CDA(Certified Data Analyst)证书后,可以通过以下几个策略在职场中提升薪资: 深化专业技能:持续学习和实践,提高数据 ...
2024-09-20数字经济专业是一门综合性、交叉性的学科,旨在培养具备扎实经济学基础和熟练数字技能的数据分析与决策人才。该专业的课程内容丰 ...
2024-09-19数据分析师这个职位本身并不特定于性别,男性和女性都可以从事这项工作。至于是否会觉得累,这取决于多种因素,包括个人的工作经 ...
2024-09-19CDA认证考试的通过率会根据不同年份和考试难度有所变化。根据CDA数据科学研究院发布的数据,第十一届CDA认证考试的通过率如下: ...
2024-09-19大数据技术毕业生在职场中脱颖而出需要从多个方面进行努力和规划。首先,明确职业目标是关键一步。了解大数据相关的职业岗位,如 ...
2024-09-19在数据分析领域,有几个专业认证是值得考虑的,它们可以帮助提升你的专业技能,并在就业市场上增加竞争力。以下是一些推荐的认证 ...
2024-09-19金融数学专业是一门结合了数学、统计学和经济学的交叉学科,旨在培养具备扎实的数学基础和金融理论知识的复合型人才。随着全球 ...
2024-09-19