京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近小编了解到了一个的概念: FP-growth,废话就不多说了,直接把整理的FP-growth的干货分享给大家。
一、FP-growth是什么
FP-Growth(频繁模式增长)算法是由韩家炜老师在2000年提出的关联分析算法,它的分治策略为:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集关联信息。
FP-growth算法通常被用来挖掘频繁项集,即从已给的多条数据记录中,挖掘出哪些项是频繁一起出现的。这种算法算法适用于标称型数据,也就是离散型数据。其实我们经常能接触到FP-growth算法,就比如,我们在百度的搜索框内输入某个字或者词,搜索引擎就会会自动补全查询词项,往往这些词项都是与搜索词经常一同出现的。
FP-growth算法源于Apriori的,是通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但缺点是,不能发现数据之间的关联规则。与Apriori相比,FP-growth算法更为高效,因为FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集。
二、FP-Tree算法基本结构
FPTree算法的基本数据结构,包含一个一棵FP树和一个项头表,每个项通过一个结点链指向它在树中出现的位置。基本结构如下所示。需要注意的是项头表需要按照支持度递减排序,在FPTree中高支持度的节点只能是低支持度节点的祖先节点。
FP-Tree:即上面的那棵树,是把事务数据表中的各个事务数据项按照支持度排序后,把每个事务中的数据项按降序依次插入到一棵以NULL为根结点的树中,同时在每个结点处记录该结点出现的支持度。
条件模式基:包含FP-Tree中与后缀模式一起出现的前缀路径的集合。即同一个频繁项在PF树中的所有节点的祖先路径的集合。例如I3在FP树中总共出现了3次,其祖先路径分别是{I2.I1:2(频度为2)},{I2:2}和{I1:2}。这3个祖先路径的集合就是频繁项I3的条件模式基。
条件树:将条件模式基按照FP-Tree的构造原则形成的一个新的FP-Tree。比如上图中I3的条件树就是。
三、FP-growth算法
FP-growth算法挖掘频繁项集的基本过程分为两步:
(1)构建FP树。
首先构造FP树,然后利用它来挖掘频繁项集。在构造FP树时,需要对数据集扫描两边,第一遍扫描用来统计频率,第二遍扫描至考虑频繁项集。
(2)从FP树中挖掘频繁项集。
首先,获取条件模式基。条件模式基是以所查找元素项为结尾的路径集合,表示的是所查找的元素项与树根节点之间的所有内容。
其次,构建条件模式基。对于每一个频繁项,都需要创建一棵条件FP树,使用创建的条件模式基作为输入,采用相同的建树代码来构建树,相应的递归发现频繁项、发现条件模式基和另外的条件树。
四、python代码实现
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
self.parent = parentNode
self.children = {}
def inc(self, numOccur):
self.count += numOccur
def disp(self, ind=1):
print ' '*ind, self.name, ' ', self.count
for child in self.children.values():
child.disp(ind+1)
def updateHeader(nodeToTest, targetNode):
while nodeToTest.nodeLink != None:
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def updateFPtree(items, inTree, headerTable, count):
if items[0] in inTree.children:
# 判断items的第一个结点是否已作为子结点
inTree.children[items[0]].inc(count)
else:
# 创建新的分支
inTree.children[items[0]] = treeNode(items[0], count, inTree)
# 更新相应频繁项集的链表,往后添加
if headerTable[items[0]][1] == None:
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
# 递归
if len(items) > 1:
updateFPtree(items[1::], inTree.children[items[0]], headerTable, count)
def createFPtree(dataSet, minSup=1):
headerTable = {}
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
for k in headerTable.keys():
if headerTable[k] < minSup:
del(headerTable[k]) # 删除不满足最小支持度的元素
freqItemSet = set(headerTable.keys()) # 满足最小支持度的频繁项集
if len(freqItemSet) == 0:
return None, None
for k in headerTable:
headerTable[k] = [headerTable[k], None] # element: [count, node]
retTree = treeNode('Null Set', 1, None)
for tranSet, count in dataSet.items():
# dataSet:[element, count]
localD = {}
for item in tranSet:
if item in freqItemSet: # 过滤,只取该样本中满足最小支持度的频繁项
localD[item] = headerTable[item][0] # element : count
if len(localD) > 0:
# 根据全局频数从大到小对单样本排序
orderedItem = [v[0] for v in sorted(localD.items(), key=lambda p:p[1], reverse=True)]
# 用过滤且排序后的样本更新树
updateFPtree(orderedItem, retTree, headerTable, count)
return retTree, headerTable
def loadSimpDat():
simDat = [['r','z','h','j','p'],
['z','y','x','w','v','u','t','s'],
['z'],
['r','x','n','o','s'],
['y','r','x','z','q','t','p'],
['y','z','x','e','q','s','t','m']]
return simDat
# 构造成 element : count 的形式
def createInitSet(dataSet):
retDict={}
for trans in dataSet:
key = frozenset(trans)
if retDict.has_key(key):
retDict[frozenset(trans)] += 1
else:
retDict[frozenset(trans)] = 1
return retDict
# 数据集
def loadSimpDat():
simDat = [['r','z','h','j','p'],
['z','y','x','w','v','u','t','s'],
['z'],
['r','x','n','o','s'],
['y','r','x','z','q','t','p'],
['y','z','x','e','q','s','t','m']]
return simDat
# 构造成 element : count 的形式
def createInitSet(dataSet):
retDict={}
for trans in dataSet:
key = frozenset(trans)
if retDict.has_key(key):
retDict[frozenset(trans)] += 1
else:
retDict[frozenset(trans)] = 1
return retDict
# 递归回溯
def ascendFPtree(leafNode, prefixPath):
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendFPtree(leafNode.parent, prefixPath)
# 条件模式基
def findPrefixPath(basePat, myHeaderTab):
treeNode = myHeaderTab[basePat][1] # basePat在FP树中的第一个结点
condPats = {}
while treeNode != None:
prefixPath = []
ascendFPtree(treeNode, prefixPath) # prefixPath是倒过来的,从treeNode开始到根
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count # 关联treeNode的计数
treeNode = treeNode.nodeLink # 下一个basePat结点
return condPats
def mineFPtree(inTree, headerTable, minSup, preFix, freqItemList):
# 最开始的频繁项集是headerTable中的各元素
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p:p[1])] # 根据频繁项的总频次排序
for basePat in bigL: # 对每个频繁项
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
freqItemList.append(newFreqSet)
condPattBases = findPrefixPath(basePat, headerTable) # 当前频繁项集的条件模式基
myCondTree, myHead = createFPtree(condPattBases, minSup) # 构造当前频繁项的条件FP树
if myHead != None:
# print 'conditional tree for: ', newFreqSet
# myCondTree.disp(1)
mineFPtree(myCondTree, myHead, minSup, newFreqSet, freqItemList) # 递归挖掘条件FP树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21