
图论是什么?关于图的理论?下面跟小编具体来了解一下图论以及简单的图论算法吧。
一、图论起源
18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如右图的“一笔画”问题,证明上述走法是不可能的。
以此,我们来看图论的概念:
图论〔Graph Theory〕以图为研究对象。在图论中,一般只存在两种形态:节点和边。
节点,也就是上述故事问题引入中的四块陆地——河的两岸,两个小岛。vertex-节点,因为首字母是V,所以用V来代表节点。
边,也就是上面故事里提到的七座桥。边(edge),因首字母为E,所以简称E。
在图论中,我们通常用G来表示图
所以:G=(V,E)。
二、图论最简单算法
1.最短路径
我们主要考虑单源最短路径问题,也就是给定一个赋权图G=(V,E),和一个特定的顶点s作为输入,找出从s到G中每一个其他顶点的最短赋权路径。
(1)从一个特定的顶节点s出发,那么从s到s的最短路径长度就是0;
(2)需要找到和s相邻的节点,这些节点到s的最短距离为1.把这些顶点标记,代表着已经找到了s到这些节点的最短路径。
(3)寻找距离s为2的节点,从s的邻点a出发,找到距离a为1的那些还未标记的节点,那么,理所当然的,s到这些顶点的最短路径为2.对这些节点进行标记。
(4)一直到全部点被标记,程序结束。
2.最小生成树
简单来说,对于一个有 n 个点的图,边一定是大于等于 n-1 条的,最小生成树,就是在这些边中选择 n-1 条出来连接所有的 n 个点,且这 n-1 条边的边权之和是所有方案中最小的。
最小生成树具有以下两条性质:
切割性质:连接点 x、y 的边权最小的边必定被生成树包含
回路性质:任意回路/环上的边权最大的边必不被生成树包含
求最小生成树一般有 Prim 算法与 Kruskal 算法,其中,Prim 算法时间复杂度为 O(V*V),与图中边数无关,适合稠密图;Kruskal 算法时间复杂度 为O(ElogE),需要对图的边进行访问,适合稀疏图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11