京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图论是什么?关于图的理论?下面跟小编具体来了解一下图论以及简单的图论算法吧。
一、图论起源
18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如右图的“一笔画”问题,证明上述走法是不可能的。
以此,我们来看图论的概念:
图论〔Graph Theory〕以图为研究对象。在图论中,一般只存在两种形态:节点和边。
节点,也就是上述故事问题引入中的四块陆地——河的两岸,两个小岛。vertex-节点,因为首字母是V,所以用V来代表节点。
边,也就是上面故事里提到的七座桥。边(edge),因首字母为E,所以简称E。
在图论中,我们通常用G来表示图
所以:G=(V,E)。
二、图论最简单算法
1.最短路径
我们主要考虑单源最短路径问题,也就是给定一个赋权图G=(V,E),和一个特定的顶点s作为输入,找出从s到G中每一个其他顶点的最短赋权路径。
(1)从一个特定的顶节点s出发,那么从s到s的最短路径长度就是0;
(2)需要找到和s相邻的节点,这些节点到s的最短距离为1.把这些顶点标记,代表着已经找到了s到这些节点的最短路径。
(3)寻找距离s为2的节点,从s的邻点a出发,找到距离a为1的那些还未标记的节点,那么,理所当然的,s到这些顶点的最短路径为2.对这些节点进行标记。
(4)一直到全部点被标记,程序结束。
2.最小生成树
简单来说,对于一个有 n 个点的图,边一定是大于等于 n-1 条的,最小生成树,就是在这些边中选择 n-1 条出来连接所有的 n 个点,且这 n-1 条边的边权之和是所有方案中最小的。
最小生成树具有以下两条性质:
切割性质:连接点 x、y 的边权最小的边必定被生成树包含
回路性质:任意回路/环上的边权最大的边必不被生成树包含
求最小生成树一般有 Prim 算法与 Kruskal 算法,其中,Prim 算法时间复杂度为 O(V*V),与图中边数无关,适合稠密图;Kruskal 算法时间复杂度 为O(ElogE),需要对图的边进行访问,适合稀疏图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27