
关于Kafka,相信大家都不陌生,一个消息流的处理平台,目前很多开发人员都把它当做一个生产&消费的中间件。今天小编就跟大家系统介绍一下Kafka,希望对大家有所帮助。
一、Kafka概念
Kafka是一个消息系统,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。Kafka是由LinkedIn开发出来的,一个分布式基于发布/订阅的消息系统,使用Scala进行编写。 Kafka具有更高的吞吐量,内置的分区也使得kafka具有更好的容错和伸缩性,这些特性使得 Kafka应用广泛,是大型消息处理应用的首选之策。
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。简单来理解,Kafka就像是一个邮箱,生产者可以当做发送邮件的人,消费者就是收邮件的人,Kafka是用来存东西的平台,只不过Kafka提供了一些处理邮件的机制。
二、Kafka基本架构
Broker:Kafka节点,一个Kafka节点就是一个broker,多个broker能够组成一个Kafka集群
Topic:一类消息,消息存放的目录也就是主题,比兔page view日志、click日志等,都能够以topic的形式存在,Kafka集群可以同时负责多个topic的分发
massage: Kafka中最基本的传递对象。
Partition:topic物理上的分组,每个topic包含partition,每个partition是一个有序的队列
Segment:partition物理上由多个segment组成,每个Segment存着message信息
Producer : 生产者,负责生产message发布到topic
Consumer : 消息消费者,订阅topic并消费message, consumer从broker拉取(pull)数据并进行处理。
Consumer Group:消费者组,一个Consumer Group包含多个consumer
Offset:偏移量,消息partition中的索引即可
三、Kafka优势
1. 分布式
大数据处理业务中极为重要的流处理框架,分布式是Kafka的天然属性。
2. 高性能:
Kafka高性能体现在两方面:(1)高吞吐量,最高能达到几十万每秒的级别的吞吐量;(2)低延时,这使得Kafka能够很好的配合SparkStreaming等其它流式处理框架的进行数据实时性处理。
3. 持久性和扩展性:
这两点是Kafka区别于其它消息队列的重要特点,主要体现在:(1)数据可持久化,(2) 容错性;(3)大水平方向上扩展;(4) 消息自动平等,避免热点问题。
四、Kafka常用场景
(1)消息队列
(2)网站活性跟踪
(3)可操作的监控数据
(4)日志收集
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14