京公网安备 11010802034615号
经营许可证编号:京B2-20210330
scrapy一个开源和协作的框架,最初的设计目的为:页面抓取(更准确来说是网络抓取),因此scrapy能够以简便、快捷·、可扩展的方式从网站中提取所需的信息。现阶段scrapy的应用十分广泛,能够用于挖掘、监测和自动化测试等许多领域,也可以被用在API所返回的数据,就像:Amazon Associates Web Services,或者通用的网络爬虫等方面。 scrapy是基于twisted框架而开发出来的,twisted是一个流行的事件驱动的python网络框架,所以通过利用一种非阻塞(又被称为异步)的代码来实现并发。
一、scrapy架构
scrapy框架主要由以下·六大组件组成:调试器(Scheduler)、下载器(Downloader)、爬虫(Spider)、中间件(Middleware)、实体管道(Item Pipeline)和Scrapy引擎(Scrapy Engine)
1、Scrapy Engine(引擎): 主要负责控制所有组件间的数据流,并在相应动作触发事件时进行处理。
2、Scheduler(调度器): 调度器从引擎接受请求,并将这些请求放入队列中,并在之后返回给引擎。
3、Downloader(下载器): 下载器负责根据引擎的请求,获取页面数据并反应给引擎,之后提供给spider。
4、Spider(爬虫): 每一个spider负责处理一个(或一些)特定网站,Spider发出请求,并对引擎返回给它下载器响应数据进行处理,以items和规则内的数据请求(urls)返回给引擎。
5、Item Pipeline(管道): Item Pipeline负责处理被spider提取出来的数据,并将数据持久化。
6、Downloader Middlewares(下载中间件): 下载器中间件是在引擎及下载器之间的交互组件,也被称为特定钩子(specific hook),能够代替接收请求、处理数据的下载, 并将结果提供给引擎。
7、Spider Middlewares(Spider中间件): Spider中间件是在引擎及Spider之间的特定钩子(specific hook),处理spider的输入(response)和输出(items及requests)。 其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能。
二、scrapy安装
windows环境配置
scrapy依赖包(或者到官网单独下载各文件安装):
1.lxml: pip install wheel
2.zope.interface:pip install zope.interface-4.3.3-cp35-cp35m-win_amd64.whl
3.pyOpenSSL:pip install pyOpenSSL
4.Twisted:pip install Twisted
5.Scrapy:pip install Scrapy
如果还没安装,Anoconda+Pycharm+Scrapy Anaconda,先到http://www.continuum.io/downloads下载对应平台的包安装。如果已经安装,直接通过conda命令安装Scrapy。conda install scrapy
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22