函数是组织好的,能够重复使用的,用来实现单一,或相关联功能的代码段。python提供了许多内建函数,这些函数提高了应用的模块性,和代码的重复利用率。下面是小编整理的python内建函数中的反射类,希望对各位学习python有所帮助。
callable(object) 检查对象object是否可调用。
1、类是可以被调用的;
2、实例是不可以被调用的,除非类中声明了__call__方法
classmethod() 1、注解,用来说明这个方式是个类方法;
2、类方法即可被类调用,也可以被实例调用;
3、类方法类似于Java中的static方法;
4、类方法中不需要有self参数
compile(source, filename,mode[, flags[, dont_inherit]])将source编译为代码或者AST对象。代码对象能够通过exec语句来执行或者eval()进行求值。
1、参数source:字符串或者AST(Abstract Syntax Trees)对象;
2、参数 filename:代码文件名称,如果不是从文件读取代码则传递一些可辨认的值;
3、参数model:指定编译代码的种类。可以指定为 ‘exec’,’eval’,’single’;
4、参数flag和dont_inherit:这两个参数暂不介绍
dir([object]) 1、不带参数时,返回当前范围内的变量、方法和定义的类型列表;
2、带参数时,返回参数的属性、方法列表;
3、如果参数包含方法__dir__(),该方法将被调用。当参数为实例时;
4、如果参数不包含__dir__(),该方法将最大限度地收集参数信息
delattr(object, name) 删除object对象名为name的属性
eval(expression [, globals [, locals]]) 计算表达式expression的值
execfile(filename [, globals [, locals]]) 用法类似exec(),不同的是execfile的参数filename为文件名,而exec的参数为字符串。
filter(function, iterable) 构造一个序列,等价于[ item for item in iterable if function(item)]。
1、参数function:返回值为True或False的函数,可以为None;
2、参数iterable:序列或可迭代对象
getattr(object, name [, defalut]) 获取一个类的属性
globals() 返回一个描述当前全局符号表的字典
hasattr(object, name) 判断对象object是否包含名为name的特性
hash(object) 如果对象object为哈希表类型,返回对象object的哈希值
id(object) 返回对象的唯一标识
isinstance(object, classinfo) 判断object是否是class的实例
issubclass(class, classinfo) 判断是否是子类
len(s) 返回集合长度
locals() 返回当前的变量列表
map(function, iterable, …) 遍历每个元素,执行function操作
memoryview(obj) 返回一个内存镜像类型的对象
next(iterator[, default]) 类似于iterator.next()
object() 基类
property([fget[, fset[, fdel[, doc]]]]) 属性访问的包装类,设置后可以通过c.x=value等来访问setter和getter
reduce(function, iterable[, initializer]) 合并操作,从第一个开始是前两个参数,然后是前两个的结果与第三个合并进行处理,以此类推
reload(module) 重新加载模块
setattr(object, name, value) 设置属性值
repr(object) 将一个对象变幻为可打印的格式
staticmethod 声明静态方法,是个注解
super(type[, object-or-type]) 引用父类
type(object) 返回该object的类型
vars([object]) 返回对象的变量,若无参数与dict()方法类似
bytearray([source [, encoding [, errors]]]) 返回一个byte数组。
1、如果source为整数,则返回一个长度为source的初始化数组;
2、如果source为字符串,则按照指定的encoding将字符串转换为字节序列;
3、如果source为可迭代类型,则元素必须为[0 ,255]中的整数;
4、如果source为与buffer接口一致的对象,则此对象也可以被用于初始化bytearray.
zip(*iterables) 从参数中的多个迭代器取元素组合一个新的迭代器
数据分析咨询请扫描二维码
寻找数据分析之路 学习路径选择: 数据分析领域广泛,包括统计学、编程(如Python、SQL)、数据可视化等。建议从基础概念开始 ...
2024-12-02数据分析领域是一个广阔而令人兴奋的领域,涉及众多强大工具和软件。掌握这些工具不仅可以提升我们的工作效率,还能让数据讲述更 ...
2024-12-02在当今信息爆炸的时代,数据成为引领业务决策和创新的关键。数据分析作为一项关键技能,已经成为各行业中备受追捧的职业。本文将 ...
2024-12-02在当今竞争激烈的职场环境中,掌握数据分析技能已然成为职业发展中不可或缺的一环。无论你是刚入行的菜鸟还是希望获得更多机会的 ...
2024-12-02重要性和影响 数据分析技能对职业发展具有显著影响。不仅在就业市场竞争激烈,个人职业路径上也起着关键作用。数据分析需求广泛 ...
2024-12-02在追求数据分析师梦想的道路上,最常问及的问题之一是:“最佳学习时间究竟是多久?”这个问题承载着我们对知识获取和实践运用的 ...
2024-12-02在当今信息爆炸的时代,数据早已成为企业决策和发展的核心。掌握数据分析技能不仅可以让你更好地理解数据背后的故事,还可以在职 ...
2024-12-02数学课程对数据分析师的重要性 数据分析师的角色在当今信息时代变得至关重要。他们扮演着解读数据、发现趋势以及为业务决策提供 ...
2024-12-02作为数据分析领域的探险家,我们身处一个充满机遇与挑战的时代。数据分析师不仅面临着广阔的职业前景,还要应对技术进步、人才竞 ...
2024-12-02就业前景与挑战 数据分析师在当前和未来的就业市场中面临着广阔的机遇和挑战。随着大数据时代的到来,企业对数据分析师的需求不 ...
2024-12-02作为数据分析师,掌握数据可视化技术是至关重要的。通过有效的数据呈现和分析,我们能够从数据中提炼出有意义的见解,为业务决策 ...
2024-12-02在今天的数字化时代,数据扮演着至关重要的角色。对于数据分析师而言,熟练掌握各种数据可视化技术至关重要。通过恰到好处的数据 ...
2024-12-02在追求数据分析技能提升的漫漫征途上,制定科学合理的学习计划和精准的时间管理至关重要。本文将为您呈现一份系统且实用的数据分 ...
2024-12-02在当今信息爆炸的时代,数据分析已成为许多行业中不可或缺的一环。然而,要想在这个领域脱颖而出,除了熟练掌握技术工具外,科 ...
2024-12-02在当今数字化时代,数据分析已成为各行各业中至关重要的一环。掌握数据分析技能不仅可以拓宽个人职业发展道路,还能为企业决策提 ...
2024-12-02在追求数据分析职业发展的道路上,合适的学习路径和认证至关重要。从基础到高级,多样化的课程和证书为不同层次的学习者提供了丰 ...
2024-12-02在追求数据分析领域的深度和广度时,建立坚实的基础至关重要。这些基础不仅承载着理解数据的能力,还支撑着对数据进行精确处理和 ...
2024-12-02数据分析基础知识 学习数据分析是一项渐进的过程,从掌握基础知识开始可以帮助我们更好地理解数据的本质以及处理方法。以下是学 ...
2024-12-02在当今信息爆炸的时代,数据分析已成为各行各业提升效率、发现洞见的重要工具。不过,对于初学者来说,学习数据分析可能显得十分 ...
2024-12-02明确学习目标与需求 对于新手,选择入门级课程掌握基础概念和工具。 深入学习统计学、机器学习等高级主题则需要进阶或专业化课 ...
2024-12-02