pandas有Series和DataFrame两种数据结构,我们之前已经讲过了DataFrame,接下来给大家介绍下另一种数据结构Series。
什么是Series?
# 自定义Series索引 arr = np.random.rand(5) s = pd.Series(arr, index=list("abcde")) print(s)
a 0.239432 b 0.554542 c 0.058231 d 0.211549 e 0.362285 dtype: float64
[ 0.67962276 0.76999562 0.95308305 0.66162424 0.93883112] 0 0.679623 1 0.769996 2 0.953083 3 0.661624 4 0.938831 dtype: float64 RangeIndex(start=0, stop=5, step=1) <class 'pandas.core.indexes.range.RangeIndex'> [0, 1, 2, 3, 4] [ 0.67962276 0.76999562 0.95308305 0.66162424 0.93883112]
# 自定义Series索引 arr = np.random.rand(5) s = pd.Series(arr, index=list("abcde")) print(s)
a 0.239432 b 0.554542 c 0.058231 d 0.211549 e 0.362285 dtype: float64
Series创建方法
# 通过标量创建 s = pd.Series(100, index=range(5)) print(s)
0 100 1 100 2 100 3 100 4 100 dtype: int64
# 通过标量创建 s = pd.Series(100, index=range(5)) print(s)
0 100 1 100 2 100 3 100 4 100 dtype: int64
# 通过标量创建 s = pd.Series(100, index=range(5)) print(s)
0 100 1 100 2 100 3 100 4 100 dtype: int64
Series下标索引
arr = np.random.rand(5)*100 s = pd.Series(arr, index=[chr(i) for i in range(97, 97+len(arr))]) print(s) print("") bool_index = s>50 # 布尔型索引 print(bool_index) print("") print(s[s>50]) # 用bool_index取出s中大于50的值
a 24.447599 b 0.795073 c 49.464825 d 9.987239 e 86.314340 dtype: float64 a False b False c False d False e True dtype: bool e 86.31434 dtype: float64
a 0.001694 b 0.107466 c 0.272233 d 0.637616 e 0.875348 dtype: float64 0.107465887721 0.107465887721 b 0.107466 d 0.637616 dtype: float64 a 0.001694 c 0.272233 dtype: float64
Series切片
print(s) s["f"] = None # 给s添加一个空值 s["g"] = np.nan # np.nan 代表有问题的值 也会识别为空值 print("") print(s) print("") bool_index1 = s.isnull() # 判断那些值是空值: 空值是True 非空为False print(bool_index1) print("") print(s[bool_index1]) # 取出空值 print("") bool_index2 = s.notnull() # 判断那些值是非空值: 空值是False 非空为True print(bool_index2) print("") print(s[bool_index2]) # 取出非空值
a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a False b False c False d False e False f True g True dtype: bool f None g NaN dtype: object a True b True c True d True e True f False g False dtype: bool a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 dtype: object
Series布尔型索引
print(s) s["f"] = None # 给s添加一个空值 s["g"] = np.nan # np.nan 代表有问题的值 也会识别为空值 print("") print(s) print("") bool_index1 = s.isnull() # 判断那些值是空值: 空值是True 非空为False print(bool_index1) print("") print(s[bool_index1]) # 取出空值 print("") bool_index2 = s.notnull() # 判断那些值是非空值: 空值是False 非空为True print(bool_index2) print("") print(s[bool_index2]) # 取出非空值
a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a False b False c False d False e False f True g True dtype: bool f None g NaN dtype: object a True b True c True d True e True f False g False dtype: bool a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 dtype: object
print(s) s["f"] = None # 给s添加一个空值 s["g"] = np.nan # np.nan 代表有问题的值 也会识别为空值 print("") print(s) print("") bool_index1 = s.isnull() # 判断那些值是空值: 空值是True 非空为False print(bool_index1) print("") print(s[bool_index1]) # 取出空值 print("") bool_index2 = s.notnull() # 判断那些值是非空值: 空值是False 非空为True print(bool_index2) print("") print(s[bool_index2]) # 取出非空值
a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a False b False c False d False e False f True g True dtype: bool f None g NaN dtype: object a True b True c True d True e True f False g False dtype: bool a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 dtype: object
Series基本技巧
查看数据
import numpy as np import pandas as pd
s = pd.Series(np.random.rand(15)) print(s) print("") print(s.head()) # 查看前5条数据 print("") print(s.head(2)) # 查看前2条数据 print("") print(s.tail()) # 查看后5条数据 print("") print(s.tail(2)) # 查看后两条数据
0 0.049732 1 0.281123 2 0.398361 3 0.492084 4 0.555350 5 0.729037 6 0.603854 7 0.643413 8 0.951804 9 0.459948 10 0.261974 11 0.897656 12 0.428898 13 0.426533 14 0.301044 dtype: float64 0 0.049732 1 0.281123 2 0.398361 3 0.492084 4 0.555350 dtype: float64 0 0.049732 1 0.281123 dtype: float64 10 0.261974 11 0.897656 12 0.428898 13 0.426533 14 0.301044 dtype: float64 13 0.426533 14 0.301044 dtype: float64
重置索引
# reindex 与给索引重新命名不同 s = pd.Series(np.random.rand(5), index=list("bdeac")) print(s) print("") s1 = s.reindex(list("abcdef")) # Series的reindex使它符合新的索引,如果索引不存在就自动填入空值 print(s1) print("") print(s) # 不会改变原数组 print("") s2 = s.reindex(list("abcdef"), fill_value=0) # 如果索引值不存在就自定义填入缺失值 print(s2)
b 0.539124 d 0.853346 e 0.065577 a 0.406689 c 0.562758 dtype: float64 a 0.406689 b 0.539124 c 0.562758 d 0.853346 e 0.065577 f NaN dtype: float64 b 0.539124 d 0.853346 e 0.065577 a 0.406689 c 0.562758 dtype: float64 a 0.406689 b 0.539124 c 0.562758 d 0.853346 e 0.065577 f 0.000000 dtype: float64
s1 = pd.Series(np.random.rand(3), index=list("abc")) s2 = pd.Series(np.random.rand(3), index=list("cbd")) print(s1) print("") print(s2) print("") print(s1+s2) # 对应的标签相加 缺失值加任何值还是缺失值
a 0.514657 b 0.618971 c 0.456840 dtype: float64 c 0.083065 b 0.893543 d 0.125063 dtype: float64 a NaN b 1.512513 c 0.539905 d NaN dtype: float64
删除
# Series.drop("索引名") s = pd.Series(np.random.rand(5), index=list("abcde")) print(s) print("") s1 = s.drop("b") # 一次删除一个并返回副本 print(s1) print("") s2 = s.drop(["d", "e"]) # 一次删除两个并返回副本 print(s2) print("") print(s) # 验证原数没有改变
a 0.149823 b 0.330215 c 0.069852 d 0.967414 e 0.867417 dtype: float64 a 0.149823 c 0.069852 d 0.967414 e 0.867417 dtype: float64 a 0.149823 b 0.330215 c 0.069852 dtype: float64 a 0.149823 b 0.330215 c 0.069852 d 0.967414 e 0.867417 dtype: float64
s = pd.Series(np.random.rand(5), index=list("abcde")) print(s) print("") s1 = s.drop(["b", "c"], inplace=True) # inplace默认是False 改为True后不会返回副本 直接修改原数组 print(s1) print("") print(s) # 验证原数组已改变
a 0.753187 b 0.077156 c 0.626230 d 0.428064 e 0.809005 dtype: float64 None a 0.753187 d 0.428064 e 0.809005 dtype: float64
添加
s1 = pd.Series(np.random.rand(5), index=list("abcde")) print(s1) print("") # 通过索引标签添加 s1["f"] = 100 print(s1) print("") # 通过append添加一个数组 并返回一个新的数组 s2 = s1.append(pd.Series(np.random.rand(2), index=list("mn"))) print(s2)
a 0.860190 b 0.351980 c 0.237463 d 0.159595 e 0.119875 dtype: float64 a 0.860190 b 0.351980 c 0.237463 d 0.159595 e 0.119875 f 100.000000 dtype: float64 a 0.860190 b 0.351980 c 0.237463 d 0.159595 e 0.119875 f 100.000000 m 0.983410 n 0.293722 dtype: float64
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03