京公网安备 11010802034615号
经营许可证编号:京B2-20210330
pandas有Series和DataFrame两种数据结构,我们之前已经讲过了DataFrame,接下来给大家介绍下另一种数据结构Series。
什么是Series?
# 自定义Series索引 arr = np.random.rand(5) s = pd.Series(arr, index=list("abcde")) print(s)
a 0.239432 b 0.554542 c 0.058231 d 0.211549 e 0.362285 dtype: float64
[ 0.67962276 0.76999562 0.95308305 0.66162424 0.93883112] 0 0.679623 1 0.769996 2 0.953083 3 0.661624 4 0.938831 dtype: float64 RangeIndex(start=0, stop=5, step=1) <class 'pandas.core.indexes.range.RangeIndex'> [0, 1, 2, 3, 4] [ 0.67962276 0.76999562 0.95308305 0.66162424 0.93883112]
# 自定义Series索引 arr = np.random.rand(5) s = pd.Series(arr, index=list("abcde")) print(s)
a 0.239432 b 0.554542 c 0.058231 d 0.211549 e 0.362285 dtype: float64
Series创建方法
# 通过标量创建 s = pd.Series(100, index=range(5)) print(s)
0 100 1 100 2 100 3 100 4 100 dtype: int64
# 通过标量创建 s = pd.Series(100, index=range(5)) print(s)
0 100 1 100 2 100 3 100 4 100 dtype: int64
# 通过标量创建 s = pd.Series(100, index=range(5)) print(s)
0 100 1 100 2 100 3 100 4 100 dtype: int64
Series下标索引
arr = np.random.rand(5)*100 s = pd.Series(arr, index=[chr(i) for i in range(97, 97+len(arr))]) print(s) print("") bool_index = s>50 # 布尔型索引 print(bool_index) print("") print(s[s>50]) # 用bool_index取出s中大于50的值
a 24.447599 b 0.795073 c 49.464825 d 9.987239 e 86.314340 dtype: float64 a False b False c False d False e True dtype: bool e 86.31434 dtype: float64
a 0.001694 b 0.107466 c 0.272233 d 0.637616 e 0.875348 dtype: float64 0.107465887721 0.107465887721 b 0.107466 d 0.637616 dtype: float64 a 0.001694 c 0.272233 dtype: float64
Series切片
print(s)
s["f"] = None # 给s添加一个空值
s["g"] = np.nan # np.nan 代表有问题的值 也会识别为空值
print("")
print(s)
print("")
bool_index1 = s.isnull() # 判断那些值是空值: 空值是True 非空为False
print(bool_index1)
print("")
print(s[bool_index1]) # 取出空值
print("")
bool_index2 = s.notnull() # 判断那些值是非空值: 空值是False 非空为True
print(bool_index2)
print("")
print(s[bool_index2]) # 取出非空值
a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a False b False c False d False e False f True g True dtype: bool f None g NaN dtype: object a True b True c True d True e True f False g False dtype: bool a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 dtype: object
Series布尔型索引
print(s)
s["f"] = None # 给s添加一个空值
s["g"] = np.nan # np.nan 代表有问题的值 也会识别为空值
print("")
print(s)
print("")
bool_index1 = s.isnull() # 判断那些值是空值: 空值是True 非空为False
print(bool_index1)
print("")
print(s[bool_index1]) # 取出空值
print("")
bool_index2 = s.notnull() # 判断那些值是非空值: 空值是False 非空为True
print(bool_index2)
print("")
print(s[bool_index2]) # 取出非空值
a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a False b False c False d False e False f True g True dtype: bool f None g NaN dtype: object a True b True c True d True e True f False g False dtype: bool a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 dtype: object
print(s)
s["f"] = None # 给s添加一个空值
s["g"] = np.nan # np.nan 代表有问题的值 也会识别为空值
print("")
print(s)
print("")
bool_index1 = s.isnull() # 判断那些值是空值: 空值是True 非空为False
print(bool_index1)
print("")
print(s[bool_index1]) # 取出空值
print("")
bool_index2 = s.notnull() # 判断那些值是非空值: 空值是False 非空为True
print(bool_index2)
print("")
print(s[bool_index2]) # 取出非空值
a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 f None g NaN dtype: object a False b False c False d False e False f True g True dtype: bool f None g NaN dtype: object a True b True c True d True e True f False g False dtype: bool a 24.4476 b 0.795073 c 49.4648 d 9.98724 e 86.3143 dtype: object
Series基本技巧
查看数据
import numpy as np import pandas as pd
s = pd.Series(np.random.rand(15)) print(s) print("") print(s.head()) # 查看前5条数据 print("") print(s.head(2)) # 查看前2条数据 print("") print(s.tail()) # 查看后5条数据 print("") print(s.tail(2)) # 查看后两条数据
0 0.049732 1 0.281123 2 0.398361 3 0.492084 4 0.555350 5 0.729037 6 0.603854 7 0.643413 8 0.951804 9 0.459948 10 0.261974 11 0.897656 12 0.428898 13 0.426533 14 0.301044 dtype: float64 0 0.049732 1 0.281123 2 0.398361 3 0.492084 4 0.555350 dtype: float64 0 0.049732 1 0.281123 dtype: float64 10 0.261974 11 0.897656 12 0.428898 13 0.426533 14 0.301044 dtype: float64 13 0.426533 14 0.301044 dtype: float64
重置索引
# reindex 与给索引重新命名不同 s = pd.Series(np.random.rand(5), index=list("bdeac")) print(s) print("") s1 = s.reindex(list("abcdef")) # Series的reindex使它符合新的索引,如果索引不存在就自动填入空值 print(s1) print("") print(s) # 不会改变原数组 print("") s2 = s.reindex(list("abcdef"), fill_value=0) # 如果索引值不存在就自定义填入缺失值 print(s2)
b 0.539124 d 0.853346 e 0.065577 a 0.406689 c 0.562758 dtype: float64 a 0.406689 b 0.539124 c 0.562758 d 0.853346 e 0.065577 f NaN dtype: float64 b 0.539124 d 0.853346 e 0.065577 a 0.406689 c 0.562758 dtype: float64 a 0.406689 b 0.539124 c 0.562758 d 0.853346 e 0.065577 f 0.000000 dtype: float64
s1 = pd.Series(np.random.rand(3), index=list("abc")) s2 = pd.Series(np.random.rand(3), index=list("cbd")) print(s1) print("") print(s2) print("") print(s1+s2) # 对应的标签相加 缺失值加任何值还是缺失值
a 0.514657 b 0.618971 c 0.456840 dtype: float64 c 0.083065 b 0.893543 d 0.125063 dtype: float64 a NaN b 1.512513 c 0.539905 d NaN dtype: float64
删除
# Series.drop("索引名") s = pd.Series(np.random.rand(5), index=list("abcde")) print(s) print("") s1 = s.drop("b") # 一次删除一个并返回副本 print(s1) print("") s2 = s.drop(["d", "e"]) # 一次删除两个并返回副本 print(s2) print("") print(s) # 验证原数没有改变
a 0.149823 b 0.330215 c 0.069852 d 0.967414 e 0.867417 dtype: float64 a 0.149823 c 0.069852 d 0.967414 e 0.867417 dtype: float64 a 0.149823 b 0.330215 c 0.069852 dtype: float64 a 0.149823 b 0.330215 c 0.069852 d 0.967414 e 0.867417 dtype: float64
s = pd.Series(np.random.rand(5), index=list("abcde")) print(s) print("") s1 = s.drop(["b", "c"], inplace=True) # inplace默认是False 改为True后不会返回副本 直接修改原数组 print(s1) print("") print(s) # 验证原数组已改变
a 0.753187 b 0.077156 c 0.626230 d 0.428064 e 0.809005 dtype: float64 None a 0.753187 d 0.428064 e 0.809005 dtype: float64
添加
s1 = pd.Series(np.random.rand(5), index=list("abcde")) print(s1) print("") # 通过索引标签添加 s1["f"] = 100 print(s1) print("") # 通过append添加一个数组 并返回一个新的数组 s2 = s1.append(pd.Series(np.random.rand(2), index=list("mn"))) print(s2)
a 0.860190 b 0.351980 c 0.237463 d 0.159595 e 0.119875 dtype: float64 a 0.860190 b 0.351980 c 0.237463 d 0.159595 e 0.119875 f 100.000000 dtype: float64 a 0.860190 b 0.351980 c 0.237463 d 0.159595 e 0.119875 f 100.000000 m 0.983410 n 0.293722 dtype: float64
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07