京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着大数据和人工智能的广泛应用,这些新兴技术的庞大影响力遍及全球经济,如今的投资者和企业家们迫切希望在2018年取得这些创新成果,正在开始确定将要定义这些技术创新的主要趋势。那么,当今的人工智能和大数据热潮背后的推动力究竟是什么呢?渴望投资于这一现象的投资者能做出什么样的准备呢?
事实证明,到目前为止,界定人工智能革命的许多力量仍然在起作用,并将继续定义人工智能在2018年如何影响市场。通过了解和熟悉这五大新兴趋势,企业和业界人士将在新的一年即将到来之际,充分利用和发挥大数据和基于人工智能的解决方案的作用。
1.更多关注零售
在最近的大数据和人工智能的应用热潮中,几乎没有哪个领域像人工智能这样可以让企业受益。无论是沃尔玛还是当地的母婴店,各地的企业似乎都在利用这些技术来降低管理费用,同时扩大业务范围。例如,客服人员可能会被人工智能助理彻底取代,但更重要的是,零售商可以通过人工智能跟踪他们的库存,而消费者的兴趣很快就会发生革命性的变化。
随着越来越多的零售商将大数据和人工智能应用到他们的商业模式中,预计这个行业现在可以利用人力和机器的力量来获得更多的利润。此外,由于更多的企业加入并将其应用于自己的业务中,人工智能可能会继续得到更多的投资。
2. 暗数据的新纪元
随着大数据的增长,利用暗数据获得商业成功的机会也将随之增加。所谓的暗数据就是企业正常商业活动期间搜集,处理,存储的数据。但这些数据通常无法用于诸如分析,商业关系或者是直接变现获利等目的。对于并不熟悉人工智能和数据管理领域的许多人来说,这种数据不断被证明是有用的。
暗数据可能难以让人理解,但随着越来越多的企业投资人工智能,这些迷惑可能就会消散,并导致人们对正在进行的数据革命的热情更高。
3. 人工智能和云计算的结合
随着越来越多的企业采用人工智能解决方案以应对其业务困境,其中许多公司将寻求加强其IT基础设施,并将业务转向云端。随着大数据应用者的规模越来越大,人工智能越来越成为一种主流,随之而来的数据需求将给企业的本地服务器带来更大的负担,这意味着他们需要在别处满足他们的数据需求。
云计算非常适合帮助满足和管理这些不断增长的需求,因为内部部署的服务器和数据管理对于企业来说变得过于混乱并且成本高昂。
4.更加智能的市场营销
市场营销是利用大数据的力量革命化的关键领域之一,通过梳理大量的数据,企业能够比以往任何时候都更准确地针对特定的消费者,将广告和交易直接发送到潜在消费者的邮箱或家门口。
随着越来越多的公司试图利用自动算法来分类数据以找到潜在的客户,人工智能领域将受益于行业投资的增加。而实时定位可以为正确使用的公司带来20%以上的销售机会,这意味着采用人工智能可以获得十分丰厚的利润。
5.聊天机器人应用越来越广泛
大数据和人工智能在全球范围内得到日益广泛的应用,在所有的创新中,很少有像聊天机器人这样的应用让消费者赞叹。 Facebook,Skype和Slack等公司都在其服务中添加了聊天机器人,他们对消费者来说非常有趣,包括法律帮助热线,技术创新让聊天机器人越来越智能。这意味着它们可以为人们解析法规,通过有效的诊断来指导患者。
如果大数据继续以目前的高速度增长,那么预计在日前使用的社交媒体平台上将会有应用更广泛的聊天机器人。这可能比人们想像得还要快,这些由人工智能技术驱动的机器人可能会更加有效地与人们聊天,人们甚至可能无法判断是否正在与另一个人交谈。
大数据和人工智能经常受到新闻界的批评,在许多好莱坞大片中也有一些不合时宜的末日情景。然而事实是,人工智能和驱动其发展的大数据革命正在使人们的世界变得更加美好,而那些投资这些新兴技术的企业和个人现在正在为自己的业务发展而努力。 在这个世界上,几乎没有东西是确定的,但是如果有一件事是肯定的,那就是大数据和人工智能将会得到更多的应用和发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26