
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
“最近的销售数据,让运营经理头大了!”
小张是某电商平台的运营经理,最近发现一个不妙的趋势——销售额连续三个月下降,最新一个月环比下降了 15%!一开始以为只是短期波动,但翻看了去年的数据后,他意识到事情可能没那么简单。到底是市场大环境变差了,还是自家出了问题?小张决定使用趋势分析来摸清销售额变化的底细。
趋势分析,说白了就是“观察数据的走势,看它是涨是跌,再想办法解释背后的原因。”这就像是医生给病人看体检报告,血压、血糖这些数据是升是降,能反映出健康状况,销售数据也是一样的道理。
简单来说,趋势分析主要做以下几项工作:
第一步
画个趋势图,看看整体走势
小张先把过去一年的销售数据拉出来,绘制销售额趋势图:
从上面的趋势图可以看到:
销售额在 7 月达到高点,然后开始下滑。8月之后数据一直在下滑直到12月。小张确定,这不是短期波动,而是一个持续的下降趋势。
第二步
拆解核心指标,找到下降的真正原因
销售额可以拆解为以下三个核心指标:
销售额=访客数(UV)×转化率×客单价
分别来看这三个指标的变化趋势。
通过访客数(UV)趋势图可知:访客量稳定,问题不在流量
访客数(UV)在 7月之后虽然略有下降,但基本保持稳定,整体保持在6月的访客数附近,但销售额并没有保持在6月的销售额水平上下。这说明销售额下降并不是由于流量减少,更大可能是流量进来后没有转化为订单。
因此,我们需要进一步查看转化率的变化趋势。
转化率趋势:下降明显,
从转换率趋势图可以看出,转化率从7月的22%降低到了12月的13%,下降幅度达到9%。这说明,尽管访客数有所减少,但影响销售额的主要因素是转化率的大幅下降。
那么,是什么导致转化率下降?我们需要进一步分析转化率的细分维度,例如:
流量来源:是否某些渠道的转化率下降?
用户类型:新用户 vs. 老用户,谁的转化率下降更多?
第三步
进一步深挖,找出影响转化率的具体因素
流量来源分析结论:付费流量转化率下降
从图表可以看到:
自然流量转化率基本保持稳定,说明老用户或者主动搜索进来的用户行为没有太大变化。
付费流量转化率下降明显,这说明:付费流量的质量下降,可能是投放渠道的用户精准度变差;付费广告可能吸引了很多低意向用户,导致他们访问但没有购买。
**关键结论:销售额下降的部分原因是广告投放的流量质量变差,带来的用户不精准,导致转化率下降。
新老用户分析结论:新用户转化率下降明显
从图表可以看出:
老用户转化率基本保持稳定,说明老客户的购买习惯没有太大变化。
新用户转化率明显下降,说明:近期获取的新用户质量较低,他们进入网站但没有完成购买;新用户的引导或促销力度可能不足,导致他们流失。
关键结论:销售额下降的另一个重要原因是新用户的转化率下降,说明近期的营销策略可能未能有效吸引高质量用户,或用户进入后缺少足够的购买激励。
第四步
趋势预测,未来会发生什么?
接下来,小张预测了未来两个月的销售额,如果不采取任何措施,是否还会继续下降?
使用时间序列回归模型(ARIMA模型)预测未来两个的销售额数据分别为93.55万元和92.67万元,即如果不调整策略,销售额可能继续下降,意味着如果不采取优化措施,销售额还会继续下滑。
第五步
优化策略,如何改善销售?
根据上述情况,小张提出可以采取的优化措施:
**针对“付费流量质量下降” **
**针对“新用户转化率下降” **
**针对“整体转化率下降” **
综上,趋势分析可以帮助快速识别业务变化,找到问题根源,并做出精准预测。结合趋势图表,可以更直观地发现问题,而不是凭感觉猜测。通过合理的优化策略,可以改善销售趋势,避免损失继续扩大。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08