
数据清洗是数据处理中不可或缺的一个步骤,它可以去除数据中的错误和异常值,使得数据更加准确、可靠、适用于后续分析。下面将介绍数据清洗的具体流程。
收集数据 首先需要收集原始数据,可以通过多种方式获得,例如采集实验数据、爬取网络数据、获取公司内部数据等。
数据预览 在进行数据清洗之前,需要先对数据进行初步的观察和分析,了解数据的基本情况,包括数据类型、大小、格式、列名、行列数等。这可以帮助我们更好地理解数据,为后续的数据清洗和分析做好准备。
缺失值处理 缺失值是指数据中存在某些值没有被记录、测量或采集到,通常用NaN、NULL或NA表示。在进行数据清洗时,需要处理缺失值。处理方法包括填充缺失值、删除缺失值、插值法等。具体选择哪种方法取决于具体情况和数据类型。
异常值处理 异常值是指与其他观测值明显不同的观测值,可能是由于数据录入错误、测量仪器故障或人为操作等原因引起的。在数据分析中,异常值可能会对结果产生负面影响,因此需要进行异常值处理。处理方法包括删除异常值、替换为其他值、平滑处理等。
重复值处理 重复值是指在数据集中出现了相同的记录。重复值可能是由于数据源信息提交错误或重复采集而产生的。如果数据集中存在重复值,则需要对其进行处理,以避免影响分析结果。处理方法包括删除重复记录、去除完全重复的行、合并重复的行等。
数据类型转换 在进行数据清洗过程中,有时候需要将数据类型进行转换,使之更加适用于后续的分析。例如,将字符型数据转换为数值型数据、日期格式转换为时间戳格式等。
数据标准化 数据标准化是指将数据按照一定规则进行归一化或缩放,以便于不同尺度、不同量级的数据可以进行比较和分析。常用的方法包括Z-score标准化、MinMax标准化、log变换等。
数据筛选和子集提取 有时候,我们只需要分析数据集的某些部分,或者要对数据进行进一步剪裁。这时候,就需要进行数据筛选和子集提取。具体方法包括根据条件进行子集提取、按列进行选择或删除等。
数据整合和变换 在进行数据清洗时,有时候需要将多个数据集进行整合和变换,以便于后续的分析。例如,将多个表格进行合并、对数据进行聚合和透视等。
数据保存 最后,当完成了数据清洗后,需要将结果保存下来,以备后续分析使用。可以将处理后的数据保存为CSV、Excel、JSON等格式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15