京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在pandas中实现SQL查询中的CASE-WHEN-THEN-END功能是一项非常有用的技能,可以帮助我们快速和高效地处理数据。我将向你介绍如何在Pandas中实现此功能,并提供一些示例,以便您更好地理解。
首先,让我们先回顾一下SQL中的CASE-WHEN-THEN-END语句是什么。它通常用于根据某些条件对数据进行分类或转换。例如,假设我们有一个“订单”表,其中包含客户的姓名、订单金额和订单日期。我们可以使用CASE-WHEN-THEN-END语句将订单金额按照以下规则进行分类:
在SQL中,可以通过以下方式实现:
SELECT
customer_name,
order_amount,
CASE
WHEN order_amount < 100 class="hljs-string">'Small Order'
WHEN order_amount BETWEEN 100 AND 1000 THEN 'Regular Order'
WHEN order_amount > 1000 THEN 'Large Order'
END AS order_type,
order_date
FROM
orders;
现在让我们看看如何在pandas中实现相同的结果。Pandas提供了类似的功能,称为“np.select”。它将一个布尔数组列表作为第一个参数,每个布尔数组都代表一个条件。第二个参数是一个列表,其中包含与每个条件对应的值。如果没有任何条件被满足,则返回第三个参数作为默认值。以下是如何在Pandas中实现上述示例的代码:
import pandas as pd
import numpy as np
orders = pd.read_csv('orders.csv')
conditions = [
orders['order_amount'] < 100 class="hljs-string">'order_amount'] >= 100) & (orders['order_amount'] <= 1000),
orders['order_amount'] > 1000
]
choices = ['Small Order', 'Regular Order', 'Large Order']
orders['order_type'] = np.select(conditions, choices, default='Unknown')
print(orders)
在这个例子中,我们首先将数据集加载到一个名为“orders”的DataFrame中。然后,我们定义了三个条件,因此我们有三个布尔数组分别代表小额订单、普通订单和大额订单。接下来,我们定义了三个值列表,其中包含与每个条件相对应的值,即“Small Order”、“Regular Order”和“Large Order”。最后,我们使用np.select函数将这些条件和值传递给订单数据集,并将结果存储在名为“order_type”的新列中。
需要注意的是,我们还提供了一个默认值参数,以便处理任何未被满足的条件。在这个例子中,我们将默认值设置为“Unknown”。
此外,在Pandas中,也可以使用“pd.cut”函数来执行类似的操作。它允许我们将连续变量分成离散的区间,并将它们标记为相应的类别。例如,在上面的订单数据集中,我们可以使用以下代码将订单金额划分为三个等距的区间:
orders['order_type'] = pd.cut(orders['order_amount'], 3, labels=['Small Order', 'Regular Order', 'Large Order'])
在这种情况下,我们将订单金额分成三个等距的区间,并将每个区间标记为“Small Order”、“Regular Order”或“Large Order”。
总结起来,Pandas提供了多种实现SQL查询中CASE-WHEN-THEN-END功能的方法,包括使用np.select和pd.cut函数。这些函数都非常有用,可以帮助我们快速、高效地处理数据,并使得数据转换和分类更容易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29