在pandas中实现SQL查询中的CASE-WHEN-THEN-END功能是一项非常有用的技能,可以帮助我们快速和高效地处理数据。我将向你介绍如何在Pandas中实现此功能,并提供一些示例,以便您更好地理解。
首先,让我们先回顾一下SQL中的CASE-WHEN-THEN-END语句是什么。它通常用于根据某些条件对数据进行分类或转换。例如,假设我们有一个“订单”表,其中包含客户的姓名、订单金额和订单日期。我们可以使用CASE-WHEN-THEN-END语句将订单金额按照以下规则进行分类:
在SQL中,可以通过以下方式实现:
SELECT
customer_name,
order_amount,
CASE
WHEN order_amount < 100 class="hljs-string">'Small Order'
WHEN order_amount BETWEEN 100 AND 1000 THEN 'Regular Order'
WHEN order_amount > 1000 THEN 'Large Order'
END AS order_type,
order_date
FROM
orders;
现在让我们看看如何在pandas中实现相同的结果。Pandas提供了类似的功能,称为“np.select”。它将一个布尔数组列表作为第一个参数,每个布尔数组都代表一个条件。第二个参数是一个列表,其中包含与每个条件对应的值。如果没有任何条件被满足,则返回第三个参数作为默认值。以下是如何在Pandas中实现上述示例的代码:
import pandas as pd
import numpy as np
orders = pd.read_csv('orders.csv')
conditions = [
orders['order_amount'] < 100 class="hljs-string">'order_amount'] >= 100) & (orders['order_amount'] <= 1000),
orders['order_amount'] > 1000
]
choices = ['Small Order', 'Regular Order', 'Large Order']
orders['order_type'] = np.select(conditions, choices, default='Unknown')
print(orders)
在这个例子中,我们首先将数据集加载到一个名为“orders”的DataFrame中。然后,我们定义了三个条件,因此我们有三个布尔数组分别代表小额订单、普通订单和大额订单。接下来,我们定义了三个值列表,其中包含与每个条件相对应的值,即“Small Order”、“Regular Order”和“Large Order”。最后,我们使用np.select函数将这些条件和值传递给订单数据集,并将结果存储在名为“order_type”的新列中。
需要注意的是,我们还提供了一个默认值参数,以便处理任何未被满足的条件。在这个例子中,我们将默认值设置为“Unknown”。
此外,在Pandas中,也可以使用“pd.cut”函数来执行类似的操作。它允许我们将连续变量分成离散的区间,并将它们标记为相应的类别。例如,在上面的订单数据集中,我们可以使用以下代码将订单金额划分为三个等距的区间:
orders['order_type'] = pd.cut(orders['order_amount'], 3, labels=['Small Order', 'Regular Order', 'Large Order'])
在这种情况下,我们将订单金额分成三个等距的区间,并将每个区间标记为“Small Order”、“Regular Order”或“Large Order”。
总结起来,Pandas提供了多种实现SQL查询中CASE-WHEN-THEN-END功能的方法,包括使用np.select和pd.cut函数。这些函数都非常有用,可以帮助我们快速、高效地处理数据,并使得数据转换和分类更容易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03