京公网安备 11010802034615号
经营许可证编号:京B2-20210330
numpy.einsum是NumPy库提供的一个强大的函数,它可以对多维数组进行高效的计算和操作。einsum函数的全称为“Einstein Summation”,它的主要功能是对多个数组进行运算并且输出结果。在这篇文章中,我们将通过介绍einsum函数的使用方式和示例来帮助你更好地理解和运用它。
einsum函数的基本语法如下:
numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe',
optimize=False)
其中,subscripts参数是一个字符串,用于指定计算的方式和输出结果的格式;operands参数则是一个或多个需要参与计算的数组。其他参数包括:
subscripts参数是einsum函数最重要的参数之一,它用于指定计算方式和输出结果的格式。在subscripts参数中,每个字母都代表一个维度,而逗号则表示不同的数组之间。例如,对于两个形状分别为(3, 4)和(4, 5)的二维数组A和B,我们可以使用以下方式来计算它们的矩阵乘积:
import numpy as np
A = np.random.rand(3, 4)
B = np.random.rand(4, 5)
C = np.einsum('ij,jk->ik', A, B)
print(C)
在这个例子中,'ij,jk->ik'就是subscripts参数,它表示了矩阵乘法的计算方式。具体来说,'ij'表示第一个数组(即A)的前两个维度,'jk'表示第二个数组(即B)的后两个维度,而'->ik'则表示输出结果的维度应该是前两个维度与后两个维度的交叉相乘。
除了使用单个字母代表维度之外,我们还可以使用多个字母组合来表示某些轴上的求和。例如,如果我们想要计算一个三维数组的所有元素之和,可以使用以下代码:
import numpy as np
A = np.random.rand(3, 4, 5)
s = np.einsum('ijk->', A)
print(s)
在这个例子中,'ijk->'表示对三维数组A的所有元素求和。注意,'->'后面没有任何字母,这意味着输出结果不包含任何维度。
einsum函数不仅可以用于矩阵乘法,还可以广泛地应用到各种线性代数、物理和机器学习问题中。其中一个常见的应用就是计算张量乘积。对于两个形状分别为(n1, n2, ..., nk)和(m1, m2, ..., mk)的$k$阶张量$A$和$B$,它们的乘积$C$的形状为$(n_1m_1, n_2m_2, ..., n_km_k)$,它的元素由以下公式给出:
$$C_{i_1m_1 + j_1, i_2m_2 + j_2, ..., i_km_k + j_k} = A_{i_1, i_2, ..., i_k}B_{j_1, j_2, ..., j_k}$$
其中$i_
在NumPy中,我们可以使用einsum函数来计算张量乘积。以下是一个简单的示例:
import numpy as np
A = np.random.rand(2, 3, 4)
B = np.random.rand(5, 4, 3)
C = np.einsum('ijk,lji->il', A, B)
print(C.shape) # 输出 (2, 5)
在这个示例中,我们定义了两个三维数组A和B,它们的形状分别为(2, 3, 4)和(5, 4, 3)。然后,我们使用einsum函数来计算它们的张量乘积,并将结果存储在数组C中。具体来说,我们使用字符串'ijk,lji->il'来指定计算方式,其中'ijk'表示第一个数组(即A)的三个维度,'lji'表示第二个数组(即B)的三个维度,而'->il'则表示输出结果应该是形状为(2, 5)的二维数组。
除了矩阵乘法和张量乘积之外,einsum函数还可以用于各种元素级别的计算。例如,我们可以使用einsum函数来计算多个数组的元素乘积。以下是一个简单的示例:
import numpy as np
A = np.array([1, 2, 3])
B = np.array([4, 5, 6])
C = np.array([7, 8, 9])
D = np.einsum('i,i,i->', A, B, C)
print(D) # 输出 104
在这个示例中,我们定义了三个一维数组A、B和C,并且使用einsum函数来计算它们的元素乘积。具体来说,我们使用字符串'i,i,i->'来指定计算方式,其中每个'i'都表示对应数组的元素,而'->'则表示输出结果不包含任何维度。输出结果为标量值104,它是A、B和C三个数组对应位置元素相乘的总和。
numpy.einsum函数是一个强大的工具,它可以用于各种复杂的多维数组计算和操作。本文介绍了einsum函数的语法和参数,以及几个常见的示例。如果你需要处理多维数组数据,或者需要进行一些高级的线性代数运算,那么einsum函数就是一个非常有用的工具。不过,在编写代码时,我们建议仔细查看einsum函数的文档,确保正确理解计算方式和输出结果的格式,以避免出现错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24