
numpy.einsum
是NumPy库提供的一个强大的函数,它可以对多维数组进行高效的计算和操作。einsum
函数的全称为“Einstein Summation”,它的主要功能是对多个数组进行运算并且输出结果。在这篇文章中,我们将通过介绍einsum
函数的使用方式和示例来帮助你更好地理解和运用它。
einsum
函数的基本语法如下:
numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe',
optimize=False)
其中,subscripts
参数是一个字符串,用于指定计算的方式和输出结果的格式;operands
参数则是一个或多个需要参与计算的数组。其他参数包括:
subscripts
参数是einsum
函数最重要的参数之一,它用于指定计算方式和输出结果的格式。在subscripts
参数中,每个字母都代表一个维度,而逗号则表示不同的数组之间。例如,对于两个形状分别为(3, 4)
和(4, 5)
的二维数组A和B,我们可以使用以下方式来计算它们的矩阵乘积:
import numpy as np
A = np.random.rand(3, 4)
B = np.random.rand(4, 5)
C = np.einsum('ij,jk->ik', A, B)
print(C)
在这个例子中,'ij,jk->ik'
就是subscripts
参数,它表示了矩阵乘法的计算方式。具体来说,'ij'
表示第一个数组(即A)的前两个维度,'jk'
表示第二个数组(即B)的后两个维度,而'->ik'
则表示输出结果的维度应该是前两个维度与后两个维度的交叉相乘。
除了使用单个字母代表维度之外,我们还可以使用多个字母组合来表示某些轴上的求和。例如,如果我们想要计算一个三维数组的所有元素之和,可以使用以下代码:
import numpy as np
A = np.random.rand(3, 4, 5)
s = np.einsum('ijk->', A)
print(s)
在这个例子中,'ijk->'
表示对三维数组A的所有元素求和。注意,'->'
后面没有任何字母,这意味着输出结果不包含任何维度。
einsum
函数不仅可以用于矩阵乘法,还可以广泛地应用到各种线性代数、物理和机器学习问题中。其中一个常见的应用就是计算张量乘积。对于两个形状分别为(n1, n2, ..., nk)
和(m1, m2, ..., mk)
的$k$阶张量$A$和$B$,它们的乘积$C$的形状为$(n_1m_1, n_2m_2, ..., n_km_k)$,它的元素由以下公式给出:
$$C_{i_1m_1 + j_1, i_2m_2 + j_2, ..., i_km_k + j_k} = A_{i_1, i_2, ..., i_k}B_{j_1, j_2, ..., j_k}$$
其中$i_
在NumPy中,我们可以使用einsum
函数来计算张量乘积。以下是一个简单的示例:
import numpy as np
A = np.random.rand(2, 3, 4)
B = np.random.rand(5, 4, 3)
C = np.einsum('ijk,lji->il', A, B)
print(C.shape) # 输出 (2, 5)
在这个示例中,我们定义了两个三维数组A和B,它们的形状分别为(2, 3, 4)
和(5, 4, 3)
。然后,我们使用einsum
函数来计算它们的张量乘积,并将结果存储在数组C中。具体来说,我们使用字符串'ijk,lji->il'
来指定计算方式,其中'ijk'
表示第一个数组(即A)的三个维度,'lji'
表示第二个数组(即B)的三个维度,而'->il'
则表示输出结果应该是形状为(2, 5)
的二维数组。
除了矩阵乘法和张量乘积之外,einsum
函数还可以用于各种元素级别的计算。例如,我们可以使用einsum
函数来计算多个数组的元素乘积。以下是一个简单的示例:
import numpy as np
A = np.array([1, 2, 3])
B = np.array([4, 5, 6])
C = np.array([7, 8, 9])
D = np.einsum('i,i,i->', A, B, C)
print(D) # 输出 104
在这个示例中,我们定义了三个一维数组A、B和C,并且使用einsum
函数来计算它们的元素乘积。具体来说,我们使用字符串'i,i,i->'
来指定计算方式,其中每个'i'
都表示对应数组的元素,而'->'
则表示输出结果不包含任何维度。输出结果为标量值104,它是A、B和C三个数组对应位置元素相乘的总和。
numpy.einsum
函数是一个强大的工具,它可以用于各种复杂的多维数组计算和操作。本文介绍了einsum
函数的语法和参数,以及几个常见的示例。如果你需要处理多维数组数据,或者需要进行一些高级的线性代数运算,那么einsum
函数就是一个非常有用的工具。不过,在编写代码时,我们建议仔细查看einsum
函数的文档,确保正确理解计算方式和输出结果的格式,以避免出现错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25