
由数据科学家米斯拉·图尔普
作为一名资深数据科学家被视为一种圣杯,尽管许多人并不知道担任一个高级职位的真正含义。最常见的印象是,作为一名资深数据科学家意味着你知道关于数据科学的一切,你是一名真正的专家。这是真的,但只是在一定程度上,因为数据科学中的收入永远不会结束。此外,作为一名资深数据科学家,不仅仅是技术知识,还有很多东西要做。
你可能会想,是的,但我为什么要关心呢?我相信了解数据科学家遵循的标准路径是很重要的,这样你就可以更明智地决定你想走哪条路。简单地说,你了解的越多,就越容易在两家公司、两个职位或两个项目之间做出选择。
[参加免费数据科学入门迷你课程,可以更好地了解什么是数据科学,它如何在更大的人工智能世界中定位,以及对学习有什么要求。]
让我们来看看数据科学家平时的职业是什么样子。
背景
作为一名初级数据科学家,对你的期望是拥有基本的数据科学知识。你的能力应该足以独自完成你的任务,或者在更资深的同事的帮助下完成任务。在这个时间点上,你不会有太多专业的动手经验。
学习
你应该对学习持开放态度,不要害怕问很多问题。更多的资深同事会很乐意帮助你学习。作为一名初级数据科学家,如果你每天都学到一些新东西,这并不奇怪。
项目
你的主要责任将是分配给你的任务。你会在遇到问题时得到更资深数据科学家的协助。除了您的技术能力之外,您还需要很好地理解与您的特定任务相关的领域的各个部分。
在初级数据科学家之后,您可能会处于一个过渡角色,在这个角色中,您将被简单地称为:数据科学家。
背景
在这一点上,您对数据科学的主要概念和技术的知识必须是扎实的。虽然这并不意味着你已经知道了一切。相反,它意味着你知道很多事情,你也知道你不知道的。你可能已经在这个级别上获得了一些很好的实践经验。
学习
学习永远不会结束,所以你仍然对新的想法和方法持开放态度。你仍然会问很多问题,但你也会被别人问到问题。初级同事带着他们的问题来找你。你仍然学习新的东西,也许不是每天,而是每隔一个月。您试图更深入地了解某些技术和工具。
项目
您是项目决策过程的一部分。你对项目的背景有一个很好的整体理解,但你仍然不需要知道比你需要做你的工作更多的东西。
然后是高级数据科学家的职位。在这一点上,您基本上是数据科学家的一切,具有一些额外的能力和责任。让我们看看它们是什么。
背景
您对主要概念和技术有坚实的理解,也对它们的陷阱有更深的了解。你在从事项目时获得了这些知识。现在你有了扎实的实践经验。
学习
因为你已经掌握了基本概念,所以你更容易学习更高级的主题。你仍然对学习持开放态度。教和支持更多的初级同事是你工作的一部分。
项目
你是项目的领导者。你不仅是决策过程的一部分,而且你领导着它。项目的成功是你的责任,在许多情况下,也是你团队成员的幸福。在领导项目的同时,你还需要与外界沟通。向业务方汇报是你的责任。在项目中工作时,您需要记住非技术约束,并确保将技术团队推向正确的方向。您必须对上下文和域有一个整体和完整的理解。保持目标和交付是你的责任。
当然,这并不是世界上每个公司的每个数据科学家的职业生涯都是这样的。此外,你可能是一个自由数据科学家,或者你可能创办你的公司,成为一个CTO,那么你的道路看起来会非常不同。但总的来说,从我和数据科学界的人交谈所学到的,这是一个普通数据科学家职业道路的很好的表现。
我们今天研究这个问题的原因是,每家公司都有自己的结构,自己的规则和自己的道路,当你得到选择时,你想知道该选择哪一个。有些人会倾向于更多的技术工作,因为你得到了更高的职位,有些人会倾向于更多的管理和行政工作。你可以用这篇文章中的解释作为一个基线,来找出你在旅途的高级阶段想要达到的位置,并相应地校准你的求职。当然,计划和偏好会随着时间而改变。但是,有一个想法,你想在哪里结束比盲目地进入它要好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11