京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由数据科学家米斯拉·图尔普
作为一名资深数据科学家被视为一种圣杯,尽管许多人并不知道担任一个高级职位的真正含义。最常见的印象是,作为一名资深数据科学家意味着你知道关于数据科学的一切,你是一名真正的专家。这是真的,但只是在一定程度上,因为数据科学中的收入永远不会结束。此外,作为一名资深数据科学家,不仅仅是技术知识,还有很多东西要做。
你可能会想,是的,但我为什么要关心呢?我相信了解数据科学家遵循的标准路径是很重要的,这样你就可以更明智地决定你想走哪条路。简单地说,你了解的越多,就越容易在两家公司、两个职位或两个项目之间做出选择。
[参加免费数据科学入门迷你课程,可以更好地了解什么是数据科学,它如何在更大的人工智能世界中定位,以及对学习有什么要求。]
让我们来看看数据科学家平时的职业是什么样子。
背景
作为一名初级数据科学家,对你的期望是拥有基本的数据科学知识。你的能力应该足以独自完成你的任务,或者在更资深的同事的帮助下完成任务。在这个时间点上,你不会有太多专业的动手经验。
学习
你应该对学习持开放态度,不要害怕问很多问题。更多的资深同事会很乐意帮助你学习。作为一名初级数据科学家,如果你每天都学到一些新东西,这并不奇怪。
项目
你的主要责任将是分配给你的任务。你会在遇到问题时得到更资深数据科学家的协助。除了您的技术能力之外,您还需要很好地理解与您的特定任务相关的领域的各个部分。
在初级数据科学家之后,您可能会处于一个过渡角色,在这个角色中,您将被简单地称为:数据科学家。
背景
在这一点上,您对数据科学的主要概念和技术的知识必须是扎实的。虽然这并不意味着你已经知道了一切。相反,它意味着你知道很多事情,你也知道你不知道的。你可能已经在这个级别上获得了一些很好的实践经验。
学习
学习永远不会结束,所以你仍然对新的想法和方法持开放态度。你仍然会问很多问题,但你也会被别人问到问题。初级同事带着他们的问题来找你。你仍然学习新的东西,也许不是每天,而是每隔一个月。您试图更深入地了解某些技术和工具。
项目
您是项目决策过程的一部分。你对项目的背景有一个很好的整体理解,但你仍然不需要知道比你需要做你的工作更多的东西。
然后是高级数据科学家的职位。在这一点上,您基本上是数据科学家的一切,具有一些额外的能力和责任。让我们看看它们是什么。
背景
您对主要概念和技术有坚实的理解,也对它们的陷阱有更深的了解。你在从事项目时获得了这些知识。现在你有了扎实的实践经验。
学习
因为你已经掌握了基本概念,所以你更容易学习更高级的主题。你仍然对学习持开放态度。教和支持更多的初级同事是你工作的一部分。
项目
你是项目的领导者。你不仅是决策过程的一部分,而且你领导着它。项目的成功是你的责任,在许多情况下,也是你团队成员的幸福。在领导项目的同时,你还需要与外界沟通。向业务方汇报是你的责任。在项目中工作时,您需要记住非技术约束,并确保将技术团队推向正确的方向。您必须对上下文和域有一个整体和完整的理解。保持目标和交付是你的责任。
当然,这并不是世界上每个公司的每个数据科学家的职业生涯都是这样的。此外,你可能是一个自由数据科学家,或者你可能创办你的公司,成为一个CTO,那么你的道路看起来会非常不同。但总的来说,从我和数据科学界的人交谈所学到的,这是一个普通数据科学家职业道路的很好的表现。
我们今天研究这个问题的原因是,每家公司都有自己的结构,自己的规则和自己的道路,当你得到选择时,你想知道该选择哪一个。有些人会倾向于更多的技术工作,因为你得到了更高的职位,有些人会倾向于更多的管理和行政工作。你可以用这篇文章中的解释作为一个基线,来找出你在旅途的高级阶段想要达到的位置,并相应地校准你的求职。当然,计划和偏好会随着时间而改变。但是,有一个想法,你想在哪里结束比盲目地进入它要好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26