
在这篇文章中,我将给出三种方法,在这些方法中,您可以自己获得实际的数据科学经验。通过完成这些项目,您将对SQL、Pandas和Machine learning Modeling有更好的理解。
话虽如此,让我们潜入其中吧!
如果你想成为一名数据科学家,你就得有很强的SQL技能。Mode提供了三个模拟实际业务问题的实际SQL案例研究,以及一个在线SQL编辑器,您可以在其中编写和运行查询。
要打开模式的SQL编辑器,请转到此链接并单击超链接,其中显示“打开另一个窗口到模式”。
学习SQL
如果您是SQL新手,我将首先从Mode的SQL教程开始,在那里您可以学习基本、中级和高级SQL技术。如果您已经对SQL有了很好的了解,可以跳过这个。
案例研究1:调查用户参与度下降
这个案例的目的是确定Yammer项目用户参与度下降的原因。在深入研究数据之前,您应该在这里阅读Yammer的概述。您应该使用4个表。
到案例的链接将为您提供更多关于问题、数据和应该回答的问题的详细信息。
如果你想要指导,请看看我是如何处理这个案例研究的。
案例研究2:理解搜索功能
本案例更侧重于产品分析。在这里,您需要深入到数据中,并确定用户体验是好是坏。这个案例的有趣之处在于,决定“好”和“坏”的含义以及如何评估用户体验取决于您。
案例研究3:验证A/B测试结果
最实用的数据科学应用程序之一是执行A/B测试。在这个案例研究中,您将深入研究a/B测试的结果,其中对照组和治疗组之间有50%的差异。在这种情况下,您的任务是在彻底分析后验证或使结果无效。
当我第一次开始开发机器学习模型时,我发现我缺乏熊猫技能是我所能做的一个很大的限制。不幸的是,与Python和SQL不同,互联网上没有太多的资源允许您练习Pandas的技能。
然而,几周前,我访问了这个资源-这是一个专门针对熊猫的充满实践问题的存储库。通过完成这些练习问题,您将知道如何:
如果你能完成这些练习问题,你应该能够自信地说你知道如何使用Pandas进行数据科学项目。它还将为您的下一节提供显著帮助。
获得数据科学经验的最好方法之一是创建自己的机器学习模型。这意味着找到一个公共数据集,定义一个问题,并用机器学习解决这个问题。
Kaggles是世界上最大的数据科学社区之一,有数百个数据集可供选择。下面是一些你可以用来开始的想法。
预测葡萄酒质量
此数据集包含关于各种葡萄酒、它们的组成和葡萄酒质量的数据。这可能是一个回归或分类问题,这取决于您如何构建它。看看你是否能预测一个红葡萄酒的质量给11个输入(固定酸度,挥发性酸度,柠檬酸,残糖,氯化物,游离二氧化硫,总二氧化硫,密度,pH,硫酸盐和酒精。
如果您想要为该数据集创建机器学习模型的指导,请查看我的方法此处.
二手车价格估算器
Craigslist是世界上最大的二手车销售收藏库。此数据集由Craigslist中的刮擦数据组成,每隔几个月更新一次。使用此数据集,看看是否可以创建一个数据集来预测汽车上市是否已经结束或价格过低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19