京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下是受此博客启发的KDnuggets民意调查结果:
放松!数据科学家不会在10年内灭绝,但角色会改变
随着人工智能的进步继续突飞猛进,在基线上获得数据科学已经变得越来越民主化。该领域的传统进入壁垒,如缺乏数据和计算能力,已经被扫除,不断涌现的新数据初创公司(有些公司每天只需一杯咖啡就能访问数据),所有强大的云计算都消除了对昂贵的现场硬件的需求。除了三位一体的先决条件之外,实现的技能和诀窍可以说已经成为数据科学中最普遍的方面。人们不需要看很远就能找到兜售口号的在线教程,如“在几秒钟内实现X模型”,“在几行代码内将Z方法应用于数据”。在一个数字世界里,即时满足已经成为游戏的名称。虽然提高可访问性在表面上并不有害,但在令人眼花缭乱的软件库和闪亮的新模型之下,数据科学的真正目的已经变得模糊,有时甚至被遗忘。因为它不是为了这样做而运行复杂的模型,也不是为了优化任意的性能度量,而是用作解决现实世界问题的工具。
一个简单但相关的例子是Iris数据集。有多少人用它来演示一个算法,而不留心思考萼片是什么,更不用说为什么我们要测量它的长度了?虽然对于可能更有兴趣在他们的曲目中添加一种新模式的初露头角的从业者来说,这些似乎是微不足道的考虑,但对于植物学家埃德加·安德森来说,这并不是微不足道的,他编目了所讨论的属性来理解鸢尾花的变异。尽管这是一个人为的例子,但它展示了一个简单的观点;主流变得更加专注于“做”数据科学,而不是“应用”数据科学。然而,这种失调并不是数据科学家衰落的原因,而是一种症状。为了了解问题的根源,我们必须后退一步,鸟瞰一下。
数据科学有一个奇怪的区别,它是少数几个让实践者没有领域的研究领域之一。药学专业的学生成为药剂师,法律专业的学生成为律师,会计专业的学生成为会计师。数据科学专业的学生因此必须成为数据科学家?但是什么的数据科学家?数据科学的广泛应用是一把双刃剑。一方面,它是一个强大的工具箱,可以应用于任何生成和捕获数据的行业。另一方面,这些工具的普遍适用性意味着用户很少会在此之前对所述行业有真正的领域知识。然而,在数据科学兴起的时候,这个问题并不重要,因为雇主们在没有完全理解它是什么以及如何将它完全集成到他们的公司中的情况下,就急于利用这项新生的技术。
然而,近十年后,企业和它们所处的环境都发生了变化。他们现在努力与以既定行业标准为基准的大型根深蒂固的团队一起实现数据科学的成熟度。迫切的招聘需求已经转向问题解决者和批判性思维者,他们了解业务、各自的行业及其利益相关者。导航几个软件包或反流几行代码的能力不再足够,数据科学从业者也不再被编码的能力所定义。no code、AutoML解决方案(如DataRobot、RapidMiner和Alteryx)的日益流行就证明了这一点。
数据科学家将在10年内灭绝(要么放弃),或者至少角色头衔将是。展望未来,被统称为数据科学的技能集将由新一代精通数据的业务专家和主题专家承担,他们能够用自己深刻的领域知识进行分析,无论他们是否会编码。他们的头衔将反映他们的专业知识,而不是他们展示专业知识的手段,无论是合规专家、产品经理还是投资分析师。我们不需要回头看很远就能找到历史性的先例。在电子表格出现的时候,数据输入专家是非常令人垂涎的,但现在,正如Cole Nussbaumer Knaflic(“用数据讲故事”的作者)恰当地观察到的那样,熟练使用Microsoft Office suite是最低限度的。在此之前,用打字机触摸打字的能力被认为是一项专业技能,然而随着个人计算机的可访问性,它也被认为是一项专业技能。
最后,对于那些考虑从事数据科学工作或开始学习的人来说,经常回顾一下你无疑会遇到的维恩图可能会对你有很好的帮助。它将数据科学描述为统计学、编程和领域知识的汇合。尽管每一个都占有相等份额的相交面积,但有些可能会保证比其他的更高的权重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23