
以下是受此博客启发的KDnuggets民意调查结果:
放松!数据科学家不会在10年内灭绝,但角色会改变
随着人工智能的进步继续突飞猛进,在基线上获得数据科学已经变得越来越民主化。该领域的传统进入壁垒,如缺乏数据和计算能力,已经被扫除,不断涌现的新数据初创公司(有些公司每天只需一杯咖啡就能访问数据),所有强大的云计算都消除了对昂贵的现场硬件的需求。除了三位一体的先决条件之外,实现的技能和诀窍可以说已经成为数据科学中最普遍的方面。人们不需要看很远就能找到兜售口号的在线教程,如“在几秒钟内实现X模型”,“在几行代码内将Z方法应用于数据”。在一个数字世界里,即时满足已经成为游戏的名称。虽然提高可访问性在表面上并不有害,但在令人眼花缭乱的软件库和闪亮的新模型之下,数据科学的真正目的已经变得模糊,有时甚至被遗忘。因为它不是为了这样做而运行复杂的模型,也不是为了优化任意的性能度量,而是用作解决现实世界问题的工具。
一个简单但相关的例子是Iris数据集。有多少人用它来演示一个算法,而不留心思考萼片是什么,更不用说为什么我们要测量它的长度了?虽然对于可能更有兴趣在他们的曲目中添加一种新模式的初露头角的从业者来说,这些似乎是微不足道的考虑,但对于植物学家埃德加·安德森来说,这并不是微不足道的,他编目了所讨论的属性来理解鸢尾花的变异。尽管这是一个人为的例子,但它展示了一个简单的观点;主流变得更加专注于“做”数据科学,而不是“应用”数据科学。然而,这种失调并不是数据科学家衰落的原因,而是一种症状。为了了解问题的根源,我们必须后退一步,鸟瞰一下。
数据科学有一个奇怪的区别,它是少数几个让实践者没有领域的研究领域之一。药学专业的学生成为药剂师,法律专业的学生成为律师,会计专业的学生成为会计师。数据科学专业的学生因此必须成为数据科学家?但是什么的数据科学家?数据科学的广泛应用是一把双刃剑。一方面,它是一个强大的工具箱,可以应用于任何生成和捕获数据的行业。另一方面,这些工具的普遍适用性意味着用户很少会在此之前对所述行业有真正的领域知识。然而,在数据科学兴起的时候,这个问题并不重要,因为雇主们在没有完全理解它是什么以及如何将它完全集成到他们的公司中的情况下,就急于利用这项新生的技术。
然而,近十年后,企业和它们所处的环境都发生了变化。他们现在努力与以既定行业标准为基准的大型根深蒂固的团队一起实现数据科学的成熟度。迫切的招聘需求已经转向问题解决者和批判性思维者,他们了解业务、各自的行业及其利益相关者。导航几个软件包或反流几行代码的能力不再足够,数据科学从业者也不再被编码的能力所定义。no code、AutoML解决方案(如DataRobot、RapidMiner和Alteryx)的日益流行就证明了这一点。
数据科学家将在10年内灭绝(要么放弃),或者至少角色头衔将是。展望未来,被统称为数据科学的技能集将由新一代精通数据的业务专家和主题专家承担,他们能够用自己深刻的领域知识进行分析,无论他们是否会编码。他们的头衔将反映他们的专业知识,而不是他们展示专业知识的手段,无论是合规专家、产品经理还是投资分析师。我们不需要回头看很远就能找到历史性的先例。在电子表格出现的时候,数据输入专家是非常令人垂涎的,但现在,正如Cole Nussbaumer Knaflic(“用数据讲故事”的作者)恰当地观察到的那样,熟练使用Microsoft Office suite是最低限度的。在此之前,用打字机触摸打字的能力被认为是一项专业技能,然而随着个人计算机的可访问性,它也被认为是一项专业技能。
最后,对于那些考虑从事数据科学工作或开始学习的人来说,经常回顾一下你无疑会遇到的维恩图可能会对你有很好的帮助。它将数据科学描述为统计学、编程和领域知识的汇合。尽管每一个都占有相等份额的相交面积,但有些可能会保证比其他的更高的权重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08