京公网安备 11010802034615号
经营许可证编号:京B2-20210330
注意:这是本文的第二部分。你可以在这里阅读第一部分。
当产品发生变化时,人们对它的反应会有所不同。有些人习惯于产品的工作方式,不愿意改变。这被称为首要效应或改变厌恶。其他人可能会欢迎变化,一个新功能吸引他们更多地使用产品。这被称为新奇效应。然而,这两种影响都不会持续很长时间,因为人们的行为在一定时间后会稳定下来。如果a/B测试有较大或较小的初始效应,这可能是由于新的或首要效应。这是实践中常见的问题,很多面试问题都是关于这个话题的。一个面试样本问题是:
我们在一个新特性上运行了一个a/B测试,测试成功了,所以我们向所有用户启动了这个更改。然而,在推出该特性一周后,我们发现治疗效果迅速下降。怎么回事?
答案是新奇效应。随着时间的推移,随着新鲜感的消退,重复使用会减少,所以我们观察到治疗效果下降。
现在您理解了新奇和首要效应,我们如何解决潜在的问题?这是面试中典型的跟进问题。
处理这种影响的一个方法是完全排除那些影响的可能性。我们可以只对首次用户运行测试,因为新奇效应和首要效应显然不会影响这类用户。如果我们已经进行了测试,并且我们想要分析是否有新颖性或首要效应,我们可以(1)将控制组新用户的结果与治疗组的结果进行比较,以评估新颖性效应(2)将第一次用户的结果与治疗组现有用户的结果进行比较,以获得新颖性或首要效应影响的实际估计。
在A/B试验的最简单形式中,有两种变体:对照(A)和治疗(B)。有时,我们运行一个测试与多个变体,看看哪一个是最好的所有功能。当我们要测试一个按钮的多种颜色或测试不同的主页时,可能会发生这种情况。然后我们会有不止一个治疗组。在这种情况下,我们不应该简单地使用0.05的相同显著性水平来决定检验是否显著,因为我们处理的是2个以上的变异体,错误发现的概率增加。例如,如果我们有3个治疗组与对照组进行比较,观察到至少1个假阳性的机会是多少(假设我们的显著性水平是0.05)?
我们可以得到没有假阳性的概率(假设组是独立的),
PR(FP=0)=0.95*0.95*0.95=0.857
然后获得至少有1个假阳性的概率
Pr(FP>=1)=1-Pr(FP=0)=0.143
只有3个治疗组(4个变异),假阳性(或I型错误)的概率超过14%。这称为“多重测试”问题。一个面试问题是
我们正在运行一个测试与10个变体,尝试我们的登陆页面的不同版本。1个处理获胜,P值小于0.05。你能改变吗?
答案是否定的,因为多重测试问题。有几种方法来接近它。一种常用的方法是Bonferroni校正。它将显著性水平0.05除以试验次数。对于面试问题,既然我们测量了10个测试,那么测试的显著性水平应该是0.05除以10等于0.005。基本上,只有当检验的p值小于0.005时,我们才声称检验是显著的。Bonferroni校正的缺点是它往往过于保守。
另一种方法是控制错误发现率(FDR):
fdr=e[#假阳性/#拒绝]
它度量了所有对零假设的拒绝,即所有你声明有统计上显著差异的度量。他们中有多少人有真正的差异,而有多少人是假阳性。只有当您有大量的度量,比如数百个时,这才有意义。假设我们有200个指标,并将FDR上限设为0.05。这意味着我们可以看到5次假阳性。我们每次都会在那200个指标中观察到至少10个假阳性。
理想情况下,我们看到了实际的显著治疗结果,我们可以考虑向所有用户推出该功能。但有时,我们会看到相互矛盾的结果,例如一个指标上升而另一个下降,因此我们需要做出输赢的权衡。一个面试样本问题是:
运行测试后,您会看到所需的指标,例如点击率在上升,而印象数在下降。你会怎么做决定?
在现实中,产品推出决策可能涉及到很多因素,如实施的复杂性、项目管理的努力、客户支持成本、维护成本、机会成本等。
在采访中,我们可以提供解决方案的简化版本,重点放在实验的当前目标上。它是为了最大限度地参与,保留,收入,还是其他什么?此外,我们希望量化负面影响,即非目标度量中的负面变化,以帮助我们做出决定。例如,如果收入是目标,我们可以选择它,而不是最大限度地参与,假设负面影响是可以接受的。
最后,我想向您推荐两个参考资料,让您更多地了解A/B测试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19