
注意:这是本文的第二部分。你可以在这里阅读第一部分。
当产品发生变化时,人们对它的反应会有所不同。有些人习惯于产品的工作方式,不愿意改变。这被称为首要效应或改变厌恶。其他人可能会欢迎变化,一个新功能吸引他们更多地使用产品。这被称为新奇效应。然而,这两种影响都不会持续很长时间,因为人们的行为在一定时间后会稳定下来。如果a/B测试有较大或较小的初始效应,这可能是由于新的或首要效应。这是实践中常见的问题,很多面试问题都是关于这个话题的。一个面试样本问题是:
我们在一个新特性上运行了一个a/B测试,测试成功了,所以我们向所有用户启动了这个更改。然而,在推出该特性一周后,我们发现治疗效果迅速下降。怎么回事?
答案是新奇效应。随着时间的推移,随着新鲜感的消退,重复使用会减少,所以我们观察到治疗效果下降。
现在您理解了新奇和首要效应,我们如何解决潜在的问题?这是面试中典型的跟进问题。
处理这种影响的一个方法是完全排除那些影响的可能性。我们可以只对首次用户运行测试,因为新奇效应和首要效应显然不会影响这类用户。如果我们已经进行了测试,并且我们想要分析是否有新颖性或首要效应,我们可以(1)将控制组新用户的结果与治疗组的结果进行比较,以评估新颖性效应(2)将第一次用户的结果与治疗组现有用户的结果进行比较,以获得新颖性或首要效应影响的实际估计。
在A/B试验的最简单形式中,有两种变体:对照(A)和治疗(B)。有时,我们运行一个测试与多个变体,看看哪一个是最好的所有功能。当我们要测试一个按钮的多种颜色或测试不同的主页时,可能会发生这种情况。然后我们会有不止一个治疗组。在这种情况下,我们不应该简单地使用0.05的相同显著性水平来决定检验是否显著,因为我们处理的是2个以上的变异体,错误发现的概率增加。例如,如果我们有3个治疗组与对照组进行比较,观察到至少1个假阳性的机会是多少(假设我们的显著性水平是0.05)?
我们可以得到没有假阳性的概率(假设组是独立的),
PR(FP=0)=0.95*0.95*0.95=0.857
然后获得至少有1个假阳性的概率
Pr(FP>=1)=1-Pr(FP=0)=0.143
只有3个治疗组(4个变异),假阳性(或I型错误)的概率超过14%。这称为“多重测试”问题。一个面试问题是
我们正在运行一个测试与10个变体,尝试我们的登陆页面的不同版本。1个处理获胜,P值小于0.05。你能改变吗?
答案是否定的,因为多重测试问题。有几种方法来接近它。一种常用的方法是Bonferroni校正。它将显著性水平0.05除以试验次数。对于面试问题,既然我们测量了10个测试,那么测试的显著性水平应该是0.05除以10等于0.005。基本上,只有当检验的p值小于0.005时,我们才声称检验是显著的。Bonferroni校正的缺点是它往往过于保守。
另一种方法是控制错误发现率(FDR):
fdr=e[#假阳性/#拒绝]
它度量了所有对零假设的拒绝,即所有你声明有统计上显著差异的度量。他们中有多少人有真正的差异,而有多少人是假阳性。只有当您有大量的度量,比如数百个时,这才有意义。假设我们有200个指标,并将FDR上限设为0.05。这意味着我们可以看到5次假阳性。我们每次都会在那200个指标中观察到至少10个假阳性。
理想情况下,我们看到了实际的显著治疗结果,我们可以考虑向所有用户推出该功能。但有时,我们会看到相互矛盾的结果,例如一个指标上升而另一个下降,因此我们需要做出输赢的权衡。一个面试样本问题是:
运行测试后,您会看到所需的指标,例如点击率在上升,而印象数在下降。你会怎么做决定?
在现实中,产品推出决策可能涉及到很多因素,如实施的复杂性、项目管理的努力、客户支持成本、维护成本、机会成本等。
在采访中,我们可以提供解决方案的简化版本,重点放在实验的当前目标上。它是为了最大限度地参与,保留,收入,还是其他什么?此外,我们希望量化负面影响,即非目标度量中的负面变化,以帮助我们做出决定。例如,如果收入是目标,我们可以选择它,而不是最大限度地参与,假设负面影响是可以接受的。
最后,我想向您推荐两个参考资料,让您更多地了解A/B测试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22