
当你试图在其他数据专业人士中脱颖而出时,确保潜在的雇主了解你的能力是至关重要的。了解Amazon Web服务(AWS)的情况越来越有用。以下是在当今就业市场上推销AWS技能的五种方法。
就像网络安全专业人员经常组建团队来应对对网络和设备的模拟攻击一样,拥有AWS技能的人可以参加帮助他们使用现有技能和学习新技能的竞赛。
在一个你可能想不到的例子中,国家足球联盟(NFL)有一个年度比赛,数据专业人员使用AWS来创造与比赛及其相关统计数据相关的新机会。
NFL足球数据和分析高级总监迈克尔·洛佩兹(Michael Lopez)表示:“我们对NFL和我们的合作伙伴继续使用数据和分析来推进我们比赛的创新方式感到非常自豪,大数据碗的成功是这一演变的重要组成部分。”
该活动还有一个导师部分。它将12名初级数据科学家与一些NFL的分析专家配对。参加这样的活动表明你渴望大规模地测试你的AWS技能。
即使你已经认为自己拥有非常先进的AWS技能,仍然有更多的东西需要学习。您的知识可以通过使整个组织符合数据存储和使用要求来加强整个组织。
例如,根据PCI要求6.5,客户仍然承担其开发的任何AWS应用程序的责任,并负责培训与这些工具相关的团队。更具体地说,公司必须解决常见的软件漏洞。花时间获得AWS认证可以向雇主表明你拥有最新的知识,并准备好应用这些知识。
基于云的技能对于帮助当今社会运行非常重要。人们使用云应用程序来保持高效并与团队成员协作。监督警务、医疗保健、交通和其他基本要素的部门使用的许多系统都在云中运行。AWS提供数字徽章,你可以用来显示你的认证,让雇主更有可能注意到它们。
投资组合是你炫耀自己作为数据专业人员所做工作的绝佳方式。尽管它们不能取代简历,但投资组合是很好的补充,因为它们让你展示项目的视觉方面。
推销你的技能的一个有效方法是使用AWS作为你的主要产品来建立投资组合。然后,您不仅展示了您的整体能力,而且还特别证明了您可以以有意义的方式应用AWS的专业知识。
您可以用于项目组合构建的一些AWS工具是免费层的一部分。在任何情况下,您都可以以最小的成本开始。
真正关心提高技能的人通常会寻找帮助自己成长的机会。尽管你当然可以用足够的献身精神自学,但与志同道合的人聚集在一起往往更有价值。交换建议和建议可以让你分享你所知道的,同时吸收他人的知识。
你也不一定需要旅行。例如,2021年6月,有一个面向科技女性的AWS虚拟会议。虽然该活动发生在澳大利亚和新西兰,但全世界的人都可以参加。
主题和活动涵盖点对点网络、职业发展、人工智能等。如果你以前参加过AWS的活动,值得用它们来推销自己。这样做向雇主表明你对职业发展的承诺,并保持你的知识最新。
增强你的简历是一个更传统但仍然有效的方法来显示你的AWS能力,让雇主感兴趣。不要仅仅将AWS作为一个要点列在您使用的工具和平台的一节中,而是要用有用的上下文来支持您的技能。提供尽可能多的细节,并在适用时关注AWS项目的积极结果。
还值得花更多的时间描述你拥有的高于平均需求的特定AWS技能。例如,一项调查发现,DevOps是有抱负的AWS专业人士简历中最需要具备的技术技能。
由于业务领导者迁移到云或将工作负载保留在多云环境中变得越来越普遍,因此您可能会提到管理多云或协助迁移的任何具体经验。
试图让自己尽可能吸引潜在的雇主可能是一项艰巨的任务。这通常是因为许多应聘者对发挥自己才能的想法犹豫不决。然而,重要的是要认识到,雇主确实需要具有AWS技能和理解云环境复杂性的人。
云计算将继续存在。这些小贴士将帮助你说服雇主,你有帮助他们公司成功的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08