京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在2021年底,人工智能(AI)和机器学习(ML)领域不再是未来不确定的新生领域。人工智能和ML已经发展成为对更广泛的数据科学世界具有巨大影响力的影响领域,这一事实在今年比以往任何时候都更加真实。
然而,随着AI、ML以及随后的数据科学的不断扩展,决定数据科学团队成功与否的参数也在不断扩展。从人工智能和ML领域获得重要和深刻见解的机会取决于数据科学团队,这些团队比一个数据科学家操作一台笔记本电脑要大。对于任何一个人来说,需要获取、清理和准备分析的数据太多了--这一过程消耗了数据科学家平均工作日的很大一部分。
现代数据科学项目围绕着关于数据准备、先前的数据科学项目以及部署必须与多个数据科学共享的数据模型的潜在方法的重要信息。因此,研究数据科学团队为什么需要上下文、一致性和数据的安全协作以确保数据科学的成功是至关重要的。让我们快速检查这些需求,以便我们能够更好地理解数据科学的成功可能是什么样的。
我们对未来数据科学成功的检验从上下文开始:如果没有记录、存储和提供给数据科学家的机构知识,依赖于尝试和失败实验的迭代模型构建过程就不能持续很长时间。然而,由于缺乏适当的文件和储存,大量的机构知识经常丢失。
考虑以下常见场景:一个初级或公民数据科学家被拉进一个项目以提高他们的技能,但由于缺乏上下文,很快就会与同步和异步协作进行斗争。这些临时团队成员需要上下文来更多地了解他们正在与之交互的数据、过去解决过问题的人员以及以前的工作如何影响当前的项目前景。
正确记录项目、数据模型及其工作流的需要很容易分散数据科学家团队的注意力,更不用说单独操作的单个科学家了。领导们可以考虑选择雇佣一个自由开发者来贡献他们的时间来保存和传播机构知识,以改进现代数据科学项目的标准审查和反馈会议。这些会议以及软件系统、工作台和最佳实践可以简化对项目相关上下文的更有效捕获,从而提高未来初级和公民数据科学家的数据发现能力。
数据科学的成功需要对知识及其周围环境进行简化的管理。如果没有它,新的、初级的和公民的数据科学家可能会很难进入并为他们的项目做出有意义的贡献,这反过来导致团队重新创建项目,而不是为以前的工作做出贡献。
当涉及到金融服务、健康和生命科学以及制造业时,ML和AI领域已经为基础变革做出了贡献;然而,这些行业受制于重要的监管环境。这意味着,在受监管的环境中进行的AI项目必须是可复制的,并有清晰的审计跟踪。换句话说,以某种方式、形状或形式参与数据科学项目的IT和业务领导者需要确保在数据科学项目的结果方面有一定程度的数据一致性。
IT和商业领袖可以期待可靠的一致性水平,在进行人工智能促进的战略转移时,他们也可以享有更多的信心。当涉及到数据科学项目时,有很多风险,有很多投资依赖于它们,所以数据科学家应该有一个基础设施,在这个基础设施中,他们可以从头到尾都有保证的可复制性水平。这种完全的可复制性转化为高层管理人员正在寻找的数据的一致性,以便决定数据科学项目是否足够重要,是否符合他们的业务目标。
反过来,这些高层管理人员应该预期,随着他们的科学团队的扩大,必要的培训集和硬件需求也将扩大,以确保旧项目结果的一致性。因此,帮助管理环境的过程和系统对于数据科学团队的扩展是绝对必要的。例如,如果一个数据科学家正在使用笔记本电脑,而一个数据工程师正在运行一个云虚拟机上运行的库的不同版本,该数据科学家可能会看到他们的数据模型从一台机器到另一台机器产生不同的结果。底线是:管理人员应该确保他们的数据合作者有一种一致的方式来共享完全相同的软件环境。
最后,我们谈到安全协作的重要性。随着企业继续将他们的运营转移到在家工作的模式,组织意识到数据科学协作比面对面协作困难得多。尽管在单个数据科学的帮助下可以管理一些核心数据科学职责(数据准备、研究和数据模型迭代),但大多数业务主管错误地将协作搁置一边,从而阻碍了远程生产力。
但是如何促进项目参与者之间的有效和远程协调以及项目数据的安全?答案在于与数据科学项目有关的可共享工作文件和数据,这使得远程传播信息更加可行。随着项目相关数据的传播变得越来越简单,共享信息变得越简单,就越容易促进远程数据协作。数据科学项目的参与者可以利用基于云的工具来加强其研究背后的安全性。但太多的领导者犯了不鼓励合作的错误,降低了生产率。
近年来,数据科学领域所取得的巨大进步是前所未有的,坦率地说,也是惊人的。数据科学的进步使世界各地的公司能够解决一些问题,这些问题以前几乎没有现成的答案,如果没有人工智能和ML带来的创新的话。
然而,随着数据科学世界的不断成熟和发展,是时候让高层管理人员和他们所监督的数据科学团队从一种更加特殊和被动的完成工作的方式中迁移了。数据科学家可以用来生成上下文、一致性和更大协作的资源,如软件工作台,可能对数据科学的成功至关重要。最终,项目将需要数据科学家、工程师、分析师和研究人员更少的努力,他们将能够更好地加速该领域的持续和惊人的成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09