
在2021年底,人工智能(AI)和机器学习(ML)领域不再是未来不确定的新生领域。人工智能和ML已经发展成为对更广泛的数据科学世界具有巨大影响力的影响领域,这一事实在今年比以往任何时候都更加真实。
然而,随着AI、ML以及随后的数据科学的不断扩展,决定数据科学团队成功与否的参数也在不断扩展。从人工智能和ML领域获得重要和深刻见解的机会取决于数据科学团队,这些团队比一个数据科学家操作一台笔记本电脑要大。对于任何一个人来说,需要获取、清理和准备分析的数据太多了--这一过程消耗了数据科学家平均工作日的很大一部分。
现代数据科学项目围绕着关于数据准备、先前的数据科学项目以及部署必须与多个数据科学共享的数据模型的潜在方法的重要信息。因此,研究数据科学团队为什么需要上下文、一致性和数据的安全协作以确保数据科学的成功是至关重要的。让我们快速检查这些需求,以便我们能够更好地理解数据科学的成功可能是什么样的。
我们对未来数据科学成功的检验从上下文开始:如果没有记录、存储和提供给数据科学家的机构知识,依赖于尝试和失败实验的迭代模型构建过程就不能持续很长时间。然而,由于缺乏适当的文件和储存,大量的机构知识经常丢失。
考虑以下常见场景:一个初级或公民数据科学家被拉进一个项目以提高他们的技能,但由于缺乏上下文,很快就会与同步和异步协作进行斗争。这些临时团队成员需要上下文来更多地了解他们正在与之交互的数据、过去解决过问题的人员以及以前的工作如何影响当前的项目前景。
正确记录项目、数据模型及其工作流的需要很容易分散数据科学家团队的注意力,更不用说单独操作的单个科学家了。领导们可以考虑选择雇佣一个自由开发者来贡献他们的时间来保存和传播机构知识,以改进现代数据科学项目的标准审查和反馈会议。这些会议以及软件系统、工作台和最佳实践可以简化对项目相关上下文的更有效捕获,从而提高未来初级和公民数据科学家的数据发现能力。
数据科学的成功需要对知识及其周围环境进行简化的管理。如果没有它,新的、初级的和公民的数据科学家可能会很难进入并为他们的项目做出有意义的贡献,这反过来导致团队重新创建项目,而不是为以前的工作做出贡献。
当涉及到金融服务、健康和生命科学以及制造业时,ML和AI领域已经为基础变革做出了贡献;然而,这些行业受制于重要的监管环境。这意味着,在受监管的环境中进行的AI项目必须是可复制的,并有清晰的审计跟踪。换句话说,以某种方式、形状或形式参与数据科学项目的IT和业务领导者需要确保在数据科学项目的结果方面有一定程度的数据一致性。
IT和商业领袖可以期待可靠的一致性水平,在进行人工智能促进的战略转移时,他们也可以享有更多的信心。当涉及到数据科学项目时,有很多风险,有很多投资依赖于它们,所以数据科学家应该有一个基础设施,在这个基础设施中,他们可以从头到尾都有保证的可复制性水平。这种完全的可复制性转化为高层管理人员正在寻找的数据的一致性,以便决定数据科学项目是否足够重要,是否符合他们的业务目标。
反过来,这些高层管理人员应该预期,随着他们的科学团队的扩大,必要的培训集和硬件需求也将扩大,以确保旧项目结果的一致性。因此,帮助管理环境的过程和系统对于数据科学团队的扩展是绝对必要的。例如,如果一个数据科学家正在使用笔记本电脑,而一个数据工程师正在运行一个云虚拟机上运行的库的不同版本,该数据科学家可能会看到他们的数据模型从一台机器到另一台机器产生不同的结果。底线是:管理人员应该确保他们的数据合作者有一种一致的方式来共享完全相同的软件环境。
最后,我们谈到安全协作的重要性。随着企业继续将他们的运营转移到在家工作的模式,组织意识到数据科学协作比面对面协作困难得多。尽管在单个数据科学的帮助下可以管理一些核心数据科学职责(数据准备、研究和数据模型迭代),但大多数业务主管错误地将协作搁置一边,从而阻碍了远程生产力。
但是如何促进项目参与者之间的有效和远程协调以及项目数据的安全?答案在于与数据科学项目有关的可共享工作文件和数据,这使得远程传播信息更加可行。随着项目相关数据的传播变得越来越简单,共享信息变得越简单,就越容易促进远程数据协作。数据科学项目的参与者可以利用基于云的工具来加强其研究背后的安全性。但太多的领导者犯了不鼓励合作的错误,降低了生产率。
近年来,数据科学领域所取得的巨大进步是前所未有的,坦率地说,也是惊人的。数据科学的进步使世界各地的公司能够解决一些问题,这些问题以前几乎没有现成的答案,如果没有人工智能和ML带来的创新的话。
然而,随着数据科学世界的不断成熟和发展,是时候让高层管理人员和他们所监督的数据科学团队从一种更加特殊和被动的完成工作的方式中迁移了。数据科学家可以用来生成上下文、一致性和更大协作的资源,如软件工作台,可能对数据科学的成功至关重要。最终,项目将需要数据科学家、工程师、分析师和研究人员更少的努力,他们将能够更好地加速该领域的持续和惊人的成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12