
当你在网上搜索时,大多数人建议你在考虑过渡或转移到另一个角色之前,先在初级职位上呆几年。与初级、中级和高级数据科学家相比,经验水平存在差异。本文将介绍对所有工作角色的期望,以及晋升所需的条件。
大多数人会看数据科学家的技能、多年经验、教育水平、专业知识、管理技能等等。要很好地理解如何区分不同级别的数据科学家之间的差异,就要理解您可以让数据科学家独自完成/处理一项任务多长时间,而不必查看他们。
使用“你可以让某人独自完成/处理一项任务多长时间而不签入?”的类比,我们可以将不同的级别划分如下:
虽然人们的经验和技能水平很重要,但一个人拥有的知识和经验水平才能把事情做好。一个初级数据科学家可能会在没有咨询高级数据科学家的情况下达到一个被阻止的地步,并且不知道如何克服它。一个中等水平的数据科学家也可能面临困难,然而,他们会更好地掌握如何独自克服它。而一个资深的数据科学家有足够的经验来完成事情。即使这包括雇佣专家或研究人员,他们也知道完成一个项目需要什么。
如果你正在寻找一份高级工作,问问自己“有人能让我独自一人在不报到的情况下完成/处理一项任务多久”。你必须对自己完全诚实,否则你就会失败。我不是说你不能设定目标,努力成为你能成为的最伟大的人。我是说,现实地对待你目前的经验水平,以帮助你找到正确的角色,并从那里不断发展。
这是一年的开始,我们都在记下我们的计划;事业或个人相关。我们都在努力打破我们今年的目标。对于所有的数据科学家,这里有一些建议,告诉你如何进步你的职业生涯,爬上阶梯,增加你的收入。
反思“你能让某人独自完成/处理一项任务多久?”这个问题,这一切都是基于独立。由于缺乏经验和技能,低年级学生往往会问更多的问题,而高年级学生有能力根据过去的经验做出决定。
这应该不会吓到你问问题。问问题没有错,那是你学习的方式。如果你不犯错误,你就不必经历一个学习过程,你就永远停滞不前。但是,不要每次都依赖于你的同事和高级职员来指挥你。当你有问题时,不要马上去找他们,试着自己去解决。当你明白如何修复问题时,你会感到一种成就感。如果你不确定你的解决方案,向你的经理征求他/她的意见。他们会感激你带着一个解决方案来找他们,而不仅仅是一个问题。
当你在阴沟里的时候,很多伟大的事情都会发生。你从一个不舒服和陌生的洞里爬出来。低年级学生通常从事较容易的工作,有时非常重复和无聊。如果你觉得你已经准备好了,向你的经理要求更有挑战性的任务,以学习和提高你的分析技能。
如果你成功地完成了任务,你的经理或资深数据科学家会意识到这一点,并为你推升职位。
资深数据科学家能够独自处理任务,这不仅是因为他们的经验水平,也是因为他们对业务目标的理解。大多数初级数据科学家的任务是孤立的,完成任务的过程并不比它是一个请求更进一步。能够通过更好地把握企业的短期和长期目标来看待更大的图景,这将改善你在处理请求或试图解决问题时的思维方式。
资深数据科学家不仅根据他们的经验,还根据公司的需要来做出决定,以帮助公司发展。学习高级数据科学家如何通过结对编程、每周团队建设或1-1's来处理和处理问题,将使您处于高级数据科学家的心态。
这些是中级或高级数据科学家的主要软技能,因为他们会经常被要求提供建议、指导和帮助来理解一个问题。除了数据团队的其他成员和他们的经理之外,许多初级数据科学家不需要与许多同事交谈。
作为一名资深数据科学家,能够管理一个数据团队需要良好的沟通和管理技能,以确保操作顺利进行。如果一个由资深数据科学家管理的项目出现问题,无论该任务是否由他/她完成;他们仍然必须承担责任。高级数据科学家应该保持警惕,在将错误提交给利益相关者之前识别错误。
如果一个资深人士缺乏沟通,他/她的业务就会分崩离析,很快就会意识到由于他们的无能,工作量就会落在他们身上。与其向涉众解释为什么输出是错误的,或者为什么做出了错误的决定,更好的解决方案是与数据团队进行管理和沟通,以避免这些问题。
“反馈是冠军的早餐。”
--肯·布兰查德
要求反馈是你自我提升的健康催化剂;与个人或事业有关的。向你的经理询问你的优点和缺点会帮助你了解什么对你有效,什么是你需要改进的。没有人是完美的,我们总有办法让自己变得更好。伟大的球员希望被告知真相,因为他们想继续赢下去!
我希望这篇文章能帮助你了解你所处的水平,以及你需要做些什么才能达到下一个水平。祝你在旅途中一切顺利!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20