英文:
https://arpitbhayani.me/blogs/string-interning
作者:arpit
来源:豌豆花下猫(Python猫)
声明:本翻译是出于交流学习的目的,基于 CC BY-NC-SA 4.0 授权协议。为便于阅读,内容略有改动。
每种编程语言为了表现出色,并且实现卓越的性能,都需要有大量编译器级与解释器级的优化。
由于字符串是任何编程语言中不可或缺的一个部分,因此,如果有快速操作字符串的能力,就可以迅速地提高整体的性能。
在本文中,我们将深入研究 Python 的内部实现,并了解 Python 如何使用一种名为字符串驻留(String Interning)的技术,实现解释器的高性能。 本文的目的不仅在于介绍 Python 的内部知识,而且还旨在使读者能够轻松地浏览 Python 的源代码;因此,本文中将有很多出自 CPython 的代码片段。
全文提纲如下:
字符串驻留是一种编译器/解释器的优化方法,它通过缓存一般性的字符串,从而节省字符串处理任务的空间和时间。
这种优化方法不会每次都创建一个新的字符串副本,而是仅为每个适当的不可变值保留一个字符串副本,并使用指针引用之。
每个字符串的唯一拷贝被称为它的intern,并因此而得名 String Interning。
Python猫注:String Interning 一般被译为“字符串驻留”或“字符串留用”,在某些语言中可能习惯用 String Pool(字符串常量池)的概念,其实是对同一种机制的不同表述。intern 作为名词时,是“实习生、实习医生”的意思,在此可以理解成“驻留物、驻留值”。
查找字符串 intern 的方法可能作为公开接口公开,也可能不公开。现代编程语言如 Java、Python、PHP、Ruby、Julia 等等,都支持字符串驻留,以使其编译器和解释器做到高性能。
字符串驻留提升了字符串比较的速度。 如果没有驻留,当我们要比较两个字符串是否相等时,它的时间复杂度将上升到 O(n),即需要检查两个字符串中的每个字符,才能判断出它们是否相等。
但是,如果字符串是固定的,由于相同的字符串将使用同一个对象引用,因此只需检查指针是否相同,就足以判断出两个字符串是否相等,不必再逐一检查每个字符。由于这是一个非常普遍的操作,因此,它被典型地实现为指针相等性校验,仅使用一条完全没有内存引用的机器指令。
字符串驻留减少了内存占用。 Python 避免内存中充斥多余的字符串对象,通过享元设计模式共享和重用已经定义的对象,从而优化内存占用。
像大多数其它现代编程语言一样,Python 也使用字符串驻留来提高性能。在 Python 中,我们可以使用is运算符,检查两个对象是否引用了同一个内存对象。
因此,如果两个字符串对象引用了相同的内存对象,则is运算符将得出True,否则为False。
>>> 'python' is 'python' True
我们可以使用这个特定的运算符,来判断哪些字符串是被驻留的。在 CPython 的,字符串驻留是通过以下函数实现的,声明在 unicodeobject.h 中,定义在 unicodeobject.c 中。
PyAPI_FUNC(void) PyUnicode_InternInPlace(PyObject **);
为了检查一个字符串是否被驻留,CPython 实现了一个名为PyUnicode_CHECK_INTERNED的宏,同样是定义在 unicodeobject.h 中。
这个宏表明了 Python 在PyASCIIObject结构中维护着一个名为interned的成员变量,它的值表示相应的字符串是否被驻留。
#define PyUnicode_CHECK_INTERNED(op) (((PyASCIIObject *)(op))->state.interned)
在 CPython 中,字符串的引用被一个名为interned的 Python 字典所存储、访问和管理。 该字典在第一次调用字符串驻留时,被延迟地初始化,并持有全部已驻留字符串对象的引用。
4.1 如何驻留字符串?
负责驻留字符串的核心函数是PyUnicode_InternInPlace,它定义在 unicodeobject.c 中,当调用时,它会创建一个准备容纳所有驻留的字符串的字典interned,然后登记入参中的对象,令其键和值都使用相同的对象引用。
以下函数片段显示了 Python 实现字符串驻留的过程。
void PyUnicode_InternInPlace(PyObject **p) {
PyObject *s = *p;
.........
// Lazily build the dictionary to hold interned Strings if (interned == NULL) {
interned = PyDict_New();
if (interned == NULL) {
PyErr_Clear();
return;
}
}
PyObject *t;
// Make an entry to the interned dictionary for the // given object t = PyDict_SetDefault(interned, s, s);
.........
// The two references in interned dict (key and value) are // not counted by refcnt. // unicode_dealloc() and _PyUnicode_ClearInterned() take // care of this. Py_SET_REFCNT(s, Py_REFCNT(s) - 2);
// Set the state of the string to be INTERNED _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
}
4.2 如何清理驻留的字符串?
清理函数从interned字典中遍历所有的字符串,调整这些对象的引用计数,并把它们标记为NOT_INTERNED,使其被垃圾回收。一旦所有的字符串都被标记为NOT_INTERNED,则interned字典会被清空并删除。
这个清理函数就是_PyUnicode_ClearInterned,在 unicodeobject.c 中定义。
void _PyUnicode_ClearInterned(PyThreadState *tstate) {
.........
// Get all the keys to the interned dictionary PyObject *keys = PyDict_Keys(interned);
.........
// Interned Unicode strings are not forcibly deallocated; // rather, we give them their stolen references back // and then clear and DECREF the interned dict. for (Py_ssize_t i = 0; i < n; i++) {
PyObject *s = PyList_GET_ITEM(keys, i);
.........
switch (PyUnicode_CHECK_INTERNED(s)) {
case SSTATE_INTERNED_IMMORTAL:
Py_SET_REFCNT(s, Py_REFCNT(s) + 1);
break;
case SSTATE_INTERNED_MORTAL:
// Restore the two references (key and value) ignored // by PyUnicode_InternInPlace(). Py_SET_REFCNT(s, Py_REFCNT(s) + 2);
break;
case SSTATE_NOT_INTERNED:
/* fall through */ default:
Py_UNREACHABLE();
}
// marking the string to be NOT_INTERNED _PyUnicode_STATE(s).interned = SSTATE_NOT_INTERNED;
}
// decreasing the reference to the initialized and // access keys object. Py_DECREF(keys);
// clearing the dictionary PyDict_Clear(interned);
// clearing the object interned Py_CLEAR(interned);
}
既然了解了字符串驻留及清理的内部原理,我们就可以找出 Python 中所有会被驻留的字符串。
为了做到这点,我们要做的就是在 CPython 源代码中查找PyUnicode_InternInPlace 函数的调用,并查看其附近的代码。下面是在 Python 中关于字符串驻留的一些有趣的发现。
5.1 变量、常量与函数名
CPython 对常量(例如函数名、变量名、字符串字面量等)执行字符串驻留。
以下代码出自codeobject.c,它表明在创建新的PyCode对象时,解释器将对所有编译期的常量、名称和字面量进行驻留。
PyCodeObject * PyCode_NewWithPosOnlyArgs(int argcount, int posonlyargcount, int kwonlyargcount,
int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno,
PyObject *linetable) {
........
if (intern_strings(names) < 0) {
return NULL;
}
if (intern_strings(varnames) < 0) {
return NULL;
}
if (intern_strings(freevars) < 0) {
return NULL;
}
if (intern_strings(cellvars) < 0) {
return NULL;
}
if (intern_string_constants(consts, NULL) < 0) {
return NULL;
}
........
}
5.2 字典的键
CPython 还会驻留任何字典对象的字符串键。
当在字典中插入元素时,解释器会对该元素的键作字符串驻留。以下代码出自 dictobject.c,展示了实际的行为。
有趣的地方:在PyUnicode_InternInPlace函数被调用处有一条注释,它问道,我们是否真的需要对所有字典中的全部键进行驻留?
int PyDict_SetItemString(PyObject *v, const char *key, PyObject *item) {
PyObject *kv;
int err;
kv = PyUnicode_FromString(key);
if (kv == NULL)
return -1;
// Invoking String Interning on the key PyUnicode_InternInPlace(&kv); /* XXX Should we really? */ err = PyDict_SetItem(v, kv, item);
Py_DECREF(kv);
return err;
}
5.3 任何对象的属性
Python 中对象的属性可以通过setattr函数显式地设置,也可以作为类成员的一部分而隐式地设置,或者在其数据类型中预定义。
CPython 会驻留所有这些属性名,以便实现快速查找。 以下是函数PyObject_SetAttr的代码片段,该函数定义在文件object.c中,负责为 Python 对象设置新属性。
int PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) {
........
PyUnicode_InternInPlace(&name);
........
}
5.4 显式地驻留
Python 还支持通过sys模块中的intern函数进行显式地字符串驻留。
当使用任何字符串对象调用此函数时,该字符串对象将被驻留。以下是 sysmodule.c 文件的代码片段,它展示了在sys_intern_impl函数中的字符串驻留过程。
static PyObject * sys_intern_impl(PyObject *module, PyObject *s) {
........
if (PyUnicode_CheckExact(s)) {
Py_INCREF(s);
PyUnicode_InternInPlace(&s);
return s;
}
........
}
只有编译期的字符串会被驻留。 在解释时或编译时指定的字符串会被驻留,而动态创建的字符串则不会。
Python猫注:这一条规则值得展开思考,我曾经在上面踩过坑……有两个知识点,我相信 99% 的人都不知道:字符串的 join() 方法是动态创建字符串,因此其创建的字符串不会被驻留;常量折叠机制也发生在编译期,因此有时候容易把它跟字符串驻留搞混淆。
包含 ASCII 字符和下划线的字符串会被驻留。 在编译期间,当对字符串字面量进行驻留时,CPython 确保仅对匹配正则表达式[a-zA-Z0-9_]*的常量进行驻留,因为它们非常贴近于 Python 的标识符。
Python猫注:关于 Python 中标识符的命名规则,在 Python2 版本只有“字母、数字和下划线”,但在 Python 3.x 版本中,已经支持 Unicode 编码。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03