
来源:麦叔编程
作者:麦叔
对于Python学习者,一旦过了入门阶段,你几乎一定会用到Python的装饰器。
它经常使用在很多地方,比如Web开发,日志处理,性能搜集,权限控制等。
还有一个极其重要的地方,那就是面试的时候。对,装饰器是面试中最常见的问题之一!
抛出问题
看这段代码:
def step1(): print('step1.......') def step2(): print('step2......') def step3(): print('step3......')
step1()
step2()
step3()
代码中定义了3个函数,然后分别调用这3个函数。假设,我们发现代码运行很慢,我们想知道每个函数运行分别花了多少时间。
我们可以在每个函数中添加计时的代码:
下面的例子只在step1中添加了相关代码作为示例,你可以自行给step2和step3添加相关代码。
import time def step1(): start = time.time()
print('step1.......')
end = time.time()
used = end - start
print(used) def step2(): print('step2......') def step3(): print('step3......')
step1()
step2()
step3()
这个方法可行!但用你的脚指头想想也会觉得,这个方法很繁琐,很笨拙,很危险!
这里只有3个函数,如果有30个函数,那不是要死人啦。万一修改的时候不小心,把原来的函数给改坏了,面子都丢光了,就要被人BS了!
一定有一个更好的解决方法!
更好的解决方法是使用装饰器。
装饰器并没有什么高深的语法,它就是一个实现了给现有函数添加装饰功能的函数,仅此而已!
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(): start = time.time()
func()
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper def step1(): print('step1.......') def step2(): print('step2......') def step3(): print('step3......')
timed_step1 = timer(step1)
timed_step2 = timer(step2)
timed_step3 = timer(step3)
timed_step1()
timed_step2()
timed_step3()
上面的timer函数就是个装饰器。
简单说就是把原来的函数给包了起来,在不改变原函数代码的情况下,在外面起到了装饰作用,这就是传说中的装饰器。它其实就是个普通的函数。
如果你觉得有点懵逼,需要加强一些对Python函数的理解。函数:
可以作为参数传递
可以作为返回值
也可以定义在函数内部
然后,我们不再直接调用step1, 而是:
timed_step1 = timer(step1) timed_step1()
简洁点,也可以这样写:
timer(step1)() timer(step2)() timer(step3)()
这样可以在不修改原有函数代码的情况下,给函数添加了装饰性的新功能。
但是仍然需要修改调用函数的地方,看起来还不够简洁。有没有更好的办法呢?当然是有的!
我们可以在被装饰的函数前使用@符号指定装饰器。这样就不用修改调用的地方了,这个世界清净了。下面的代码和上一段代码功能一样。在运行程序的时候,Python解释器会根据@标注自动生成装饰器函数,并调用装饰器函数。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(): start = time.time()
func()
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper @timer def step1(): print('step1.......') @timer def step2(): print('step2......') @timer def step3(): print('step3......')
step1()
step2()
step3()
到了这里,装饰器的核心概念就讲完了。
剩下的基本都是在不同场合下的应用。如果你是大忙人,不想学的太深,可以搜藏本文章,以后再回来看。
上面是一个最简单的例子,被装饰的函数既没有参数,也没有返回值。下面来看有参数和返回值的情况。
我们把step1修改一下,传入一个参数,表示要走几步。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(): start = time.time()
func()
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper @timer def step1(num): print(f'我走了#{num}步')
step1(5)
再去运行,就报错了:
TypeError: wrapper() takes 0 positional arguments but 1 was given
这是因为,表面上我们写的是step1(5),实际上Python是先调用wrapper()函数。这个函数不接受参数,所以报错了。
为了解决这个问题,我们只要给wrapper加上参数就可以。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(*args, **kwargs): start = time.time()
func(*args, **kwargs)
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper
如果被装饰的函数func有返回值,wrapper也只需把func的返回值返回就可以了。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(*args, **kwargs): start = time.time()
ret_value = func(*args, **kwargs)
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return ret_value
return wrapper @timer def add(num1, num2): return num1 + num2
sum = add(5, 8)
print(sum)
这里我新加了一个add函数,计算两个数之和。
在wrapper函数中,我们先保存了func的返回值到ret_value,然后在wrapper的最后返回这个值就可以了。
到这里,你又进了一步,你可以击败88.64%的Python学习者了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11