京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:【公众号】
Python技术
知乎上有许多关于颜值、身材的话题,有些话题的回复数甚至高达几百上千,拥有成千上万的关注者与被浏览数。如果我们在摸鱼的时候欣赏这些话题将花费大量的时间,可以用 Python 制作一个下载知乎回答图片的小脚本,将图片下载到本地。
首先打开 F12 控制台面板,看到照片的 URL 都是 https://pic4.zhimg.com/80/xxxx.jpg?source=xxx 这种格式的。
滚动知乎页面向下翻页,找到一个带 limit,offset 参数的 URL 请求。
检查 Response 面板中的内容是否包含了图片的 URL 地址,其中图片地址 URL 存在 data-original 属性中。
从上图可以看出图片的地址存放在 content 属性下的 data-original 属性中。
下面代码将获取图片的地址,并写入文件。
import re import requests import os import urllib.request import ssl from urllib.parse import urlsplit from os.path import basename import json
ssl._create_default_https_context = ssl._create_unverified_context
headers = {
'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
'Accept-Encoding': 'gzip, deflate' } def get_image_url(qid, title): answers_url = 'https://www.zhihu.com/api/v4/questions/'+str(qid)+'/answers?include=data%5B*%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B*%5D.mark_infos%5B*%5D.url%3Bdata%5B*%5D.author.follower_count%2Cbadge%5B*%5D.topics%3Bdata%5B*%5D.settings.table_of_content.enabled&offset={}&limit=10&sort_by=default&platform=desktop' offset = 0 session = requests.Session()
while True:
page = session.get(answers_url.format(offset), headers = headers)
json_text = json.loads(page.text)
answers = json_text['data']
offset += 10 if not answers:
print('获取图片地址完成')
return pic_re = re.compile('data-original="(.*?)"', re.S)
for answer in answers:
tmp_list = []
pic_urls = re.findall(pic_re, answer['content'])
for item in pic_urls:
# 去掉转移字符 pic_url = item.replace("", "")
pic_url = pic_url.split('?')[0]
# 去重复 if pic_url not in tmp_list:
tmp_list.append(pic_url)
for pic_url in tmp_list:
if pic_url.endswith('r.jpg'):
print(pic_url)
write_file(title, pic_url) def write_file(title, pic_url): file_name = title + '.txt' f = open(file_name, 'a')
f.write(pic_url + 'n')
f.close()
示例结果:
下面代码将读取文件中的图片地址并下载。
def read_file(title):
file_name = title + '.txt' pic_urls = []
# 判断文件是否存在
if not os.path.exists(file_name):
return pic_urls
with open(file_name, 'r') as f:
for line in f:
url = line.replace("n", "")
if url not in pic_urls:
pic_urls.append(url)
print("文件中共有{}个不重复的 URL".format(len(pic_urls)))
return pic_urls
def download_pic(pic_urls, title):
# 创建文件夹
if not os.path.exists(title):
os.makedirs(title)
error_pic_urls = []
success_pic_num = 0 repeat_pic_num = 0 index = 1 for url in pic_urls:
file_name = os.sep.join((title,basename(urlsplit(url)[2])))
if os.path.exists(file_name):
print("图片{}已存在".format(file_name))
index += 1 repeat_pic_num += 1 continue
try:
urllib.request.urlretrieve(url, file_name)
success_pic_num += 1 index += 1 print("下载{}完成!({}/{})".format(file_name, index, len(pic_urls)))
except:
print("下载{}失败!({}/{})".format(file_name, index, len(pic_urls)))
error_pic_urls.append(url)
index += 1 continue
print("图片全部下载完毕!(成功:{}/重复:{}/失败:{})".format(success_pic_num, repeat_pic_num, len(error_pic_urls)))
if len(error_pic_urls) > 0:
print('下面打印失败的图片地址')
for error_url in error_pic_urls:
print(error_url)
结语
今天的文章用 Python 爬虫制作了一个小脚本,如果小伙伴们觉得文章有趣且有用,点个 转发 支持一下吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01