京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:AirPython
作者:星安果
1. 前言
微服务架构下,由于各类服务开发进度的不一致,导致联调工作经常会存在不确定性,进而导致项目延期
在实际工作中,为了保证项目进度,我们经常需要针对部分未完成模块及不稳定模块采用 Mock 方式,以验证已开发完的模块
本篇文章将介绍 Python 实现 Mock 的几种常见方式
Mock 测试:在测试验证过程中,对于那些尚未完成或不稳定的对象,用一个虚拟对象来替代,以便测试的测试方法
因此,这个虚拟的对象是 Mock 对象,Mock 对象是真实对象在调试期间的代替品
它的优势包含:
在 Python 3.3 之前使用 mock,需要先安装依赖
# 安装mock依赖
pip3 install mock
假设 Product 类中有 2 个方法
其中,get_product_status_by_id 方法还没有实现;buy_product 方法依赖于
get_product_status_by_id 方法的返回值
# product_impl.py
class Product(object):
def __init__(self):
pass
def get_product_status_by_id(self, product_id):
"""
通过商品id获取产品信息(Mock)
:return:
"""
# 待实现查询数据库的业务逻辑
pass
def buy_product(self, product_id):
"""
购买产品(真实逻辑)
:return:
"""
# 产品信息
# {"id":1,"name":"苹果","num":23}
product = self.get_product_status_by_id(product_id)
if product.get("num") >= 1:
result = {"status": 0, "msg": "购买成功!"}
else:
result = {"status": 1, "msg": "购买失败,库存不足!"}
return result
Mock 的步骤如下:
导入使用 mock 中的 patch 方法作为测试方法的装饰器,对 get_product_status_by_id
方法进行 Mock,方法参数为 Mock 对象测试方法中,对该 Mock 对象设置一个返回值调用并断言from
mock import patch from mock_.product_impl import Product @patch('mock_.product_impl
.Product.get_product_status_by_id') def test_succuse(mock_get_product_status_by_id):
# Mock方法,指定一个返回值 mock_get_product_status_by_id.return_value =
{"id": 1, "name": "苹果", "num": 23}
product = Product()
assert product.buy_product(1).get("status") == 0 需要注意的是,
Mock 此方法的时候,必须制定该方法的完整路径使用 @patch.object 同样能完成 Mock,
不同的是,@patch.object 包含 2 个参数第一个参数为该方法所在的类;第二个参数为方法名from
mock import patch from mock_.product_impl import Product # Mock一个方法 # @patch.object:
对象、方法名 @patch.object(Product, 'get_product_status_by_id') def test_succuse
(mock_get_product_status_by_id):
# Mock方法,指定一个返回值 mock_get_product_status_by_id.return_value =
{"id": 1, "name": "苹果", "num": 23}
product = Product()
assert product.buy_product(1).get("status") == 0
Python 3.3 之后,mock 作为标准库,已经内置到 unittest 中了
还是以 3.1 的场景为例,使用 unittest 编写一个测试用例
Mock 步骤如下:
import unittest
from unittest import mock
from unittest_mock.product_impl import Product
class TestProduct(unittest.TestCase):
def test_success(self):
# 成功结果
mock_success_value = {"id": 1, "name": "苹果", "num": 23}
product = Product()
product.get_product_status_by_id = mock.Mock(return_value=mock_success_value)
# 调用实际函数
assert product.buy_product(1).get("status") == 0
if __name__ == "__main__":
unittest.main()
相比 unittest,pytest 由于强大的插件支持,用户群体可能更大!
如果项目本身使用的框架是 pytest,则 Mock 更建议使用 pytest-mock 这个插件
# pytest依赖
pip3 install pytest
Mock 步骤如下:
import pytest
from pytest_mock_.product_impl import Product
def test_buy_product_success(mocker):
"""
购买成功Mock
:param mocker:
:return:
"""
# 实例化一个产品对象
product = Product()
# 对Product中的方法的返回值进行Mock
mock_value = {"id": 1, "name": "苹果", "num": 23}
# Mock方法
# 注意:需要指定方法的完整路径
# mocker.patch 的第一个参数必须是模拟对象的具体路径,第二个参数用来指定返回值
product.get_product_status_by_id = mocker.patch("product_impl.Product.get_product_status_by_id",
return_value=mock_value)
# 调用购买产品的方法
result = product.buy_product(1)
assert result.get("status") == 0
需要注意的是,mocker.patch 方法第一个参数必须是 Mock 对象的完整路径
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22