京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:AirPython
作者:星安果
1. 前言
微服务架构下,由于各类服务开发进度的不一致,导致联调工作经常会存在不确定性,进而导致项目延期
在实际工作中,为了保证项目进度,我们经常需要针对部分未完成模块及不稳定模块采用 Mock 方式,以验证已开发完的模块
本篇文章将介绍 Python 实现 Mock 的几种常见方式
Mock 测试:在测试验证过程中,对于那些尚未完成或不稳定的对象,用一个虚拟对象来替代,以便测试的测试方法
因此,这个虚拟的对象是 Mock 对象,Mock 对象是真实对象在调试期间的代替品
它的优势包含:
在 Python 3.3 之前使用 mock,需要先安装依赖
# 安装mock依赖
pip3 install mock
假设 Product 类中有 2 个方法
其中,get_product_status_by_id 方法还没有实现;buy_product 方法依赖于
get_product_status_by_id 方法的返回值
# product_impl.py
class Product(object):
def __init__(self):
pass
def get_product_status_by_id(self, product_id):
"""
通过商品id获取产品信息(Mock)
:return:
"""
# 待实现查询数据库的业务逻辑
pass
def buy_product(self, product_id):
"""
购买产品(真实逻辑)
:return:
"""
# 产品信息
# {"id":1,"name":"苹果","num":23}
product = self.get_product_status_by_id(product_id)
if product.get("num") >= 1:
result = {"status": 0, "msg": "购买成功!"}
else:
result = {"status": 1, "msg": "购买失败,库存不足!"}
return result
Mock 的步骤如下:
导入使用 mock 中的 patch 方法作为测试方法的装饰器,对 get_product_status_by_id
方法进行 Mock,方法参数为 Mock 对象测试方法中,对该 Mock 对象设置一个返回值调用并断言from
mock import patch from mock_.product_impl import Product @patch('mock_.product_impl
.Product.get_product_status_by_id') def test_succuse(mock_get_product_status_by_id):
# Mock方法,指定一个返回值 mock_get_product_status_by_id.return_value =
{"id": 1, "name": "苹果", "num": 23}
product = Product()
assert product.buy_product(1).get("status") == 0 需要注意的是,
Mock 此方法的时候,必须制定该方法的完整路径使用 @patch.object 同样能完成 Mock,
不同的是,@patch.object 包含 2 个参数第一个参数为该方法所在的类;第二个参数为方法名from
mock import patch from mock_.product_impl import Product # Mock一个方法 # @patch.object:
对象、方法名 @patch.object(Product, 'get_product_status_by_id') def test_succuse
(mock_get_product_status_by_id):
# Mock方法,指定一个返回值 mock_get_product_status_by_id.return_value =
{"id": 1, "name": "苹果", "num": 23}
product = Product()
assert product.buy_product(1).get("status") == 0
Python 3.3 之后,mock 作为标准库,已经内置到 unittest 中了
还是以 3.1 的场景为例,使用 unittest 编写一个测试用例
Mock 步骤如下:
import unittest
from unittest import mock
from unittest_mock.product_impl import Product
class TestProduct(unittest.TestCase):
def test_success(self):
# 成功结果
mock_success_value = {"id": 1, "name": "苹果", "num": 23}
product = Product()
product.get_product_status_by_id = mock.Mock(return_value=mock_success_value)
# 调用实际函数
assert product.buy_product(1).get("status") == 0
if __name__ == "__main__":
unittest.main()
相比 unittest,pytest 由于强大的插件支持,用户群体可能更大!
如果项目本身使用的框架是 pytest,则 Mock 更建议使用 pytest-mock 这个插件
# pytest依赖
pip3 install pytest
Mock 步骤如下:
import pytest
from pytest_mock_.product_impl import Product
def test_buy_product_success(mocker):
"""
购买成功Mock
:param mocker:
:return:
"""
# 实例化一个产品对象
product = Product()
# 对Product中的方法的返回值进行Mock
mock_value = {"id": 1, "name": "苹果", "num": 23}
# Mock方法
# 注意:需要指定方法的完整路径
# mocker.patch 的第一个参数必须是模拟对象的具体路径,第二个参数用来指定返回值
product.get_product_status_by_id = mocker.patch("product_impl.Product.get_product_status_by_id",
return_value=mock_value)
# 调用购买产品的方法
result = product.buy_product(1)
assert result.get("status") == 0
需要注意的是,mocker.patch 方法第一个参数必须是 Mock 对象的完整路径
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26