cda

数字化人才认证

首页 > 行业图谱 >

123 3/3

请问如何解决神经网络训练集和验证集的loss、acc差别过大的问题?

请问如何解决神经网络训练集和验证集的loss、acc差别过大的问题?
2023-04-07
在神经网络的训练过程中,我们通常会把数据集划分为训练集和验证集。训练集用于训练模型,而验证集则用于评估模型的性能。在实际操作中,有时候我们会遇到训练集和验证集的损失(loss)、准确率(acc)差别过大的情况 ...

神经网络训练的时候Loss是不是一定要收敛到0?

神经网络训练的时候Loss是不是一定要收敛到0?
2023-04-07
神经网络训练是一种基于反向传播算法的优化过程,旨在通过调整模型参数来最小化损失函数的值,从而使得模型能够更好地拟合训练数据并具备良好的泛化性能。在这个过程中,我们通常会关注训练过程中的损失函数值(或 ...

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?
2023-04-07
当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...

为什么训练好的lstm模型每次输出的结果不一样?

为什么训练好的lstm模型每次输出的结果不一样?
2023-04-03
LSTM(Long Short-Term Memory)模型是一种特殊的循环神经网络(Recurrent Neural Network,RNN),其能够处理序列数据并在某种程度上解决梯度消失和梯度爆炸问题。训练好的LSTM模型在使用时,每次输出的结果可能 ...

神经网络loss值很小,但实际预测结果差很大,有什么原因?

神经网络loss值很小,但实际预测结果差很大,有什么原因?
2023-04-03
神经网络是一种模拟人类神经系统运作的计算模型,可以完成很多复杂的任务,如图像识别、语音识别和自然语言处理等。在训练神经网络时,最重要的指标是损失函数(loss function),用于衡量模型预测结果与真实值之 ...

神经网络训练结果不稳定可能是什么原因?有什么解决办法?

神经网络训练结果不稳定可能是什么原因?有什么解决办法?
2023-04-03
神经网络是一种强大的机器学习模型,可用于各种任务。然而,在训练神经网络时,我们可能会遇到结果不稳定的情况,这意味着在同样的数据集和超参数下,神经网络的性能可能会有很大的差异。本文将探讨神经网络训练结 ...

Pytorch里面多任务Loss是加起来还是分别backward?

Pytorch里面多任务Loss是加起来还是分别backward?
2023-03-22
在PyTorch中,多任务学习是一种广泛使用的技术。它允许我们训练一个模型,使其同时预测多个不同的输出。这些输出可以是不同的分类、回归或者其他形式的任务。在实现多任务学习时,最重要的问题之一是如何计算损失 ...
123 3/3

OK