cda

数字化人才认证

首页 > 行业图谱 >

opencv 的imencode()图像 压缩 函数原理是什么?

opencv 的imencode()图像压缩函数原理是什么?
2023-04-07
OpenCV是一个广泛使用的计算机视觉库,提供了众多的图像处理函数和工具。其中,imencode()函数是一种图像压缩函数,用于将OpenCV中的图像数据压缩成指定格式的二进制数据。本文将介绍imencode()函数的原理和实现方 ...
MySQL不同的引擎在成本、压缩、性能比较如何?
2023-04-07
MySQL是一个广泛使用的关系型数据库管理系统,支持多种存储引擎。每个存储引擎都有其独特的特性和优缺点,包括成本、压缩和性能。在本文中,我们将比较MySQL不同引擎之间的这些方面。 MyISAM MyISAM是MySQL最早的 ...

让python在后台自动解压各种 压缩 文件!

让python在后台自动解压各种压缩文件!
2020-11-09
作者: 陈熹 一、需求描述 os 模块综合应用 glob 模块综合应用 利用 gzip zipfile rarfile tarfile 模块解压文件 码代码之前需要将复杂问题解释成多个明确的要求,即这个程序实现的逻 ...
python实现tar文件压缩解压的实例详解
2018-04-06
python实现tar文件压缩解压的实例详解 这篇文章主要介绍了python 实现tar文件压缩解压的实例详解的相关资料,这里提供实现方法,帮助大家学习理解这部分内容,需要的朋友可以参考下 python 实现tar文件压缩解 ...

CDA 数据分析师:因子分析实战指南 —— 高维数据的潜在维度挖掘与业务价值提炼

CDA 数据分析师:因子分析实战指南 —— 高维数据的潜在维度挖掘与业务价值提炼
2025-11-03
在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次数、评论数、复购频次、消费金额” 等 10 + 特征,表面上分散独立,实则可能由 “消费 ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

【CDA干货】卷积层之后:归一化与激活函数的取舍之道

【CDA干货】卷积层之后:归一化与激活函数的取舍之道
2025-10-24
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都会面临的基础决策。这三者的组合并非随意搭配,而是深刻影响模型训练稳定性、收敛速度 ...

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术
2025-10-23
在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真实状态(如无人机的位置与速度、化工反应釜的温度与压力、汽车的行驶轨迹)。卡尔曼滤 ...

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界
2025-10-22
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4,神经网络的规模似乎正朝着 “越大越好” 的方向演进。但事实果真如此吗?神经网络的 ...

【CDA干货】偏态分布的置信区间:从原理到实战,破解非对称数据的统计推断难题

【CDA干货】偏态分布的置信区间:从原理到实战,破解非对称数据的统计推断难题
2025-10-20
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集中在几百元)、居民收入水平(高收入群体拉高均值,分布右偏)、产品故障间隔时间(多 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】正态 t 检验与符号秩检验的选择指南

【CDA干货】正态 t 检验与符号秩检验的选择指南
2025-10-09
本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确:何时必须用 t 检验,何时只能用符号秩检验,以及如何通过数据特征快速决策。 一、先 ...

【CDA干货】球面卷积神经网络(SCNN)

【CDA干货】球面卷积神经网络(SCNN)
2025-09-30
球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通过重构 “卷积核设计、数据采样、特征聚合” 的底层逻辑,让神经网络能够适配球面的非 ...

【CDA干货】MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略

【CDA干货】MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略
2025-09-24
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— 部分服务器初始内存占用仅 2GB,运行数月后却飙升至 8GB 以上,且无明显大查询或高并发 ...

【CDA干货】解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南

【CDA干货】解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南
2025-09-15
解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests库),开发者常会接触到响应对象(Response)的两个核心属性 ——text和content。二者 ...

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析
2025-09-09
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于推荐系统、金融风控、工业质检、医疗诊断等领域。然而,并非所有机器学习项目都能实现 ...

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践
2025-09-04
在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连接卷积神经网络(DenseNet),通过 “密集块(Dense Block)” 中相邻层的全连接设计 ...

【CDA干货】特征值、特征向量与主成分:数据降维背后的线性代数逻辑

【CDA干货】特征值、特征向量与主成分:数据降维背后的线性代数逻辑
2025-09-03
特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的核心手段 —— 当我们面对包含数十甚至数百个特征的数据集时,如何剔除冗余信息、保留 ...

【CDA干货】K-S 图的横轴设计

【CDA干货】K-S 图的横轴设计
2025-09-02
要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴的定义逻辑与分布检验的需求来分析。以下从 K-S 图的本质、横轴设计原则及实际应用场 ...

OK
客服在线
立即咨询