cda

数字化人才认证

首页 > 行业图谱 >

12345678 1/8

【CDA干货】JMP 绘制 箱线图 :从数据分布可视化到深度统计分析

【CDA干货】JMP 绘制箱线图:从数据分布可视化到深度统计分析
2025-10-28
箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分析、市场调研等领域的 “基础分析工具”。而 JMP 作为专业的统计分析软件,不仅能快速 ...

 Python数据可视化:Matplotlib 直方图、 箱线图 、条形图、热图、折线图、散点图。。。

Python数据可视化:Matplotlib 直方图、箱线图、条形图、热图、折线图、散点图。。。
2017-10-26
 Python数据可视化:Matplotlib 直方图、箱线图、条形图、热图、折线图、散点图。。。 使用Python进行数据分析,数据的可视化是数据分析结果最好的展示方式,这里从Analytic Vidhya中找到的相关数据,进 ...

Excel- 箱线图 (数据分布)分析

Excel-箱线图(数据分布)分析
2017-10-25
Excel-箱线图(数据分布)分析 箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看 ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

CDA 数据分析师:聚类分析实战指南 —— 无监督分组与精准业务运营的核心工具

CDA 数据分析师:聚类分析实战指南 —— 无监督分组与精准业务运营的核心工具
2025-11-04
在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值、潜力、一般用户”“将商品按销售表现归类为爆款、平销、滞销品”。这类问题缺乏明确 ...

CDA 数据分析师:因子分析实战指南 —— 高维数据的潜在维度挖掘与业务价值提炼

CDA 数据分析师:因子分析实战指南 —— 高维数据的潜在维度挖掘与业务价值提炼
2025-11-03
在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次数、评论数、复购频次、消费金额” 等 10 + 特征,表面上分散独立,实则可能由 “消费 ...

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)
2025-10-30
为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数据准备→系数选择→计算实操→结果解读” 的全流程(含 Excel/Python 工具演示),同时 ...

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具
2025-10-30
对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强度与方向,为决策提供数据支撑” 的核心工具。比如业务想知道 “用户消费频次是否影响 ...

CDA 数据分析师:方差分析(ANOVA)与 F 检验实战指南 —— 验证多组数据差异的科学方法

CDA 数据分析师:方差分析(ANOVA)与 F 检验实战指南 —— 验证多组数据差异的科学方法
2025-10-29
在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显著差异”“4 种促销方案的转化效果是否不同”。这类问题无法用两组对比的 t 检验解决 ...

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法
2025-10-27
对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转化为可验证的统计假设,通过数据排除随机波动,得出可靠结论” 的核心技能。例如,当业 ...

CDA 数据分析师:可视化驱动的数据探索与统计分析实战指南

CDA 数据分析师:可视化驱动的数据探索与统计分析实战指南
2025-10-24
在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分析师的核心能力,正是通过 “统计分析拆解数据逻辑,可视化直观呈现结论”,让隐藏在 ...

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”
2025-10-23
在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技巧(分析模型),也无法烹制出符合要求的佳肴(可靠结论)。据行业调研显示,CDA(Cert ...

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导
2025-10-10
在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为筛选关键影响因素、优化工艺参数的核心工具。但实际操作中,常出现 “试验结束后,通过 ...

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”
2025-09-30
在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股价波动趋势”,零售门店想确定 “明日库存该备多少”。这些问题的答案,藏在 “时间序 ...

【CDA干货】线性相关点分布的四种基本类型:特征、识别与实战应用

【CDA干货】线性相关点分布的四种基本类型:特征、识别与实战应用
2025-09-25
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心概念 —— 通过观察变量数据的散点分布,结合量化的相关系数,可快速判断变量间是否存 ...

【CDA干货】CDA 业务数据分析:6 步闭环,让数据驱动业务落地

【CDA干货】CDA 业务数据分析:6 步闭环,让数据驱动业务落地
2025-09-23
CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并非单纯 “分析数据”,而是通过标准化的业务数据分析流程,将模糊的业务问题转化为明 ...

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者
2025-09-19
CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字化运营的 “核心载体”,其价值实现依赖 “获取(源头)- 加工(提纯)- 使用(落地) ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

CDA 数据分析师:驾驭商业数据分析流程的核心力量

CDA 数据分析师:驾驭商业数据分析流程的核心力量
2025-09-09
CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体流程是 “将数据转化为价值” 的标准化路径,而 CDA(Certified Data Analyst)数据分 ...
12345678 1/8

OK
客服在线
立即咨询