cda

数字化人才认证

首页 > 行业图谱 >

1234 1/4

召回率(Recall)与 精确率 (precision)的区别在哪里?怎样进行衡量

召回率(Recall)与精确率(precision)的区别在哪里?怎样进行衡量
2020-07-08
召回率(Recall),也被称为 查全率,或者True Positive Rate,R= TP/(TP+FN) ; 反映了所有真正为正例的样本中被分类器判定出来为正例的比例。 精度,或者叫做精确率(precision):P = TP/(TP+FP);反映了被分类器 ...

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用
2025-11-11
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的收益波动分析,再到监管合规的数据报送,统计方法是金融机构控制风险、提升收益的核心 ...

【CDA干货】机器学习分类模型:从原理到实战的完整指南

【CDA干货】机器学习分类模型:从原理到实战的完整指南
2025-11-06
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 / 恶性)”,从 “客户流失预测(流失 / 留存)” 到 “图像分类(猫 / 狗 / 汽车)” ...

CDA 数据分析师:决策树分析实战指南 —— 可解释性建模与业务规则提取核心工具

CDA 数据分析师:决策树分析实战指南 —— 可解释性建模与业务规则提取核心工具
2025-11-06
在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户是否流失并明确流失原因”“判断客户是否办理贷款并提炼审批规则”。这类问题需要模型 ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具
2025-08-07
K-S 曲线、回归与分类:数据分析中的重要工具​ 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各自承担着不同的角色,又在实际应用中相互关联、协同作用,共同为数据解读、预测和决策 ...

【CDA干货】鸢尾花判别分析:机器学习中的经典实践案例

【CDA干货】鸢尾花判别分析:机器学习中的经典实践案例
2025-07-29
鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别与分类算法的大门,它就是鸢尾花数据集。鸢尾花判别分析不仅是机器学习入门的绝佳案例 ...

【CDA干货】评估模型预测为正时的准确性

【CDA干货】评估模型预测为正时的准确性
2025-06-25
评估模型预测为正时的准确性​ ​ 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结果为正时,评估其准确性不仅关乎模型在实际应用中的可靠性,更直接影响基于该模型所做 ...
模型过拟合的优化解决方案
2024-12-06
理解模型过拟合 模型过拟合是指机器学习模型在训练数据上表现出色,但在新数据或未见过的数据上表现不佳的现象。这通常是因为模型过于复杂,捕捉到了训练数据中的噪声而非内在模式,导致泛化能力下降。 简化模型复杂 ...
数据分析学习路径与技巧
2024-12-02
在当今信息爆炸的时代,数据分析和机器学习等技能变得愈发重要。掌握这些技能不仅可以让你在职场中脱颖而出,还能让你更好地理解世界。然而,学习数据分析并非易事,需要扎实的基础和持之以恒的努力。本文将探讨数据 ...

大数据管理与应用的五大职业方向及其发展潜力

大数据管理与应用的五大职业方向及其发展潜力
2024-09-19
大数据管理与应用领域的发展潜力和职业方向是当前热门话题之一。随着信息技术的快速发展,数据已经成为企业和组织决策的重要基础。本文将深入探讨大数据管理与应用的五大职业方向及其发展潜力,帮助读者了解这一领域 ...

数据挖掘是做什么的?从数据分析到商业决策的全流程解析

数据挖掘是做什么的?从数据分析到商业决策的全流程解析
2024-09-19
数据挖掘的基本流程 1. 定义问题 数据挖掘的第一步是明确要解决的具体商业或技术问题。这一步骤是整个数据挖掘过程的基础。只有明确了问题,才能有针对性地进行数据收集和分析。例如,一家零售公司可能希望通过数据 ...

什么是数据挖掘的流程?一步步带你掌握数据挖掘的完整过程

什么是数据挖掘的流程?一步步带你掌握数据挖掘的完整过程
2024-09-14
数据挖掘已经成为现代商业和科技领域中不可或缺的一部分。它不仅帮助企业从海量数据中提取有价值的信息,还为决策提供了有力的支持。本文将带你详细了解数据挖掘的完整流程,从商业理解到模型部署,帮助你逐步掌握这 ...
数据计算与应用专业的学生,考数据分析师好找工作吗
2024-09-09
第 1 章 引言 数据分析师作为现代数据驱动经济中的重要职业,近年来受到了越来越多的关注和重视。数据科学、人工智能等领域的蓬勃发展,使得数据分析不仅成为科技公司的核心竞争力,也逐渐普及到其他各 ...
数据分析流程:如何做有效的数据分析
2024-08-20
数据分析如今已成为各行业决策的重要工具,然而,分析过程不仅仅是简单的数据处理,更是一项需要系统性和逻辑性的工作。一个有效的数据分析流程通常包括明确目标、数据收集与清洗、模型建立与评估、以及最后 ...
数据分析师的一天:揭秘数据驱动的工作流程
2024-08-19
在现代企业中,数据分析师扮演着至关重要的角色。他们负责将复杂的数据转化为有用的商业洞察,帮助企业在竞争中保持领先。本文将带你深入了解数据分析师的一天,展示他们如何通过系统性的分析和沟通,推动数 ...

如何使用机器学习算法来进行数据预测?

如何使用机器学习算法来进行数据预测?
2024-03-22
随着大数据时代的到来,数据预测成为了企业决策的重要组成部分。而机器学习算法作为一种强大的工具,可以帮助我们从海量的数据中提取有价值的信息,并进行准确的数据预测。本文将介绍机器学习算法在数据预测中的应 ...
如何使用机器学习进行分类和回归预测?
2024-03-21
机器学习是一种利用统计学和计算机科学的方法,通过从数据中学习模式和关系来进行分类和回归预测的技术。在本文中,我们将介绍使用机器学习进行分类和回归预测的基本步骤和常见算法。 分类和回归是机器学习中两个最 ...
如何让计算机从数据中学习并做出预测?
2024-03-21
在数字化时代,数据已经成为我们生活和工作中不可忽视的一部分。数据的爆炸增长和复杂性使传统方法面对处理和解释这些海量信息的挑战。然而,随着机器学习的快速发展,计算机可以从数据中学习,并利用学到的知识做 ...
1234 1/4

OK
客服在线
立即咨询