导读:深度学习已经存在了几十年,不同的结构和架构针对不同的用例而进行演变。其中一些是基于我们对大脑的想法,另一些是基于大脑的实际工作。本文将简单介绍几个业界目前使用的先进的架构。 作者:谢林·托马 ...
2020-07-23
在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和 ...
2020-07-23
对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合 ...
2020-07-23
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。 一、首先来回顾一下什么是泛化能力 泛化能力(generalization ability),百科给出的定义是:机器 ...
2020-07-23文章来源:接地气学堂 作者:接地气的陈老师 “推动业务”是数据人最怕的词了。妈耶,还推动业务呢,我自己不被业务部门天天追着屁股要数就不错了,咋个推动法。可领导们最喜欢提这种要求。今天我们就 ...
2020-07-23我们都知道python是一中功能强大,易上手的计算机编程语言,应用范围很是广泛。我们平时可以使用python进行数据统计,报表制作等,有时候也会遇到内容识别的场景,需要将汉字转换成拼音。今天小编跟大家分享的这篇 ...
2020-07-22
Keras是源于 Theano 或 者TensorFlow 的一个深度学习框架,它的设计来源于Torch,编程语言使用的是 Python ,是一个拥有强大功能、内容抽象,而且高度模块化的神经网络库。 今天小编给大家分享的就是Keras模型 ...
2020-07-22
我们都知道python是一款功能强大的数据分析工具,而且使用起来相对简单,被广泛应用于数据分析,web开发,人工智能等很多领域。语音识别,也叫作自动语音识别,其是以计算机自动将人类的语音内容转换为相应文字为 ...
2020-07-22
feature importance,根据含义就能理解,也就是特征重要性,在预测建模项目中起着非常重要作用,能够提供对数据、模型的见解,和如何进行降维和选择特征,并以此来提高预测模型的的效率和有效性。今天小编为大家带 ...
2020-07-22最近python可是大火,各行各业的人都在学习python。既然要学习,那么基础知识就一定要掌握。列表降维了解一下啦!python是如何实现列表将为的呢?其实,python 的内置函数 sum() 能够接收两个参数,当第一个参数是 ...
2020-07-22pandas 是源于NumPy 的一种python库,主要是为了解决数据分析任务而创建的。pandas为我们提供了大量简单便捷地处理数据的函数和方法。今天小编给大家分享的就是:快速解释如何使用pandas的inplace参数,希望对大家 ...
2020-07-22
大家都知道tableau是一款功能非常强大的数据统计和可视化的python库,尤其是在数据可视化方面,tableau不需要借助复杂的脚本,仅仅使用拖放界面可视化数据,就能制作出许多好看的可视化图表,而且还能够轻松地将多 ...
2020-07-22
商业分析中经常会用到漏斗图。尤其是在网站流量监控、电商商品转化等一些数据运营方面。漏斗图之所以是漏斗就就是倒三角的形状,是因为用户或者流量,集中从某个功能点进入,很大可能会按照产品本身设定的流程来完 ...
2020-07-22
相信接触过数据分析的人,尤其是商业分析方面,一定有听说过漏斗模型。漏斗模型,顾名思义,也就是像漏斗一样的模型,在互联网或者是电商行业经常会用到的一种营销模型。今天,小编就为大家整理了漏斗模型的一些基 ...
2020-07-22
大家都知道,数据分析的目的是驱动业务的增长。销售漏斗是我们数据分析中最常用到的商业分析模型之一,对于掌握销售的具体进展情况,促进销售转化很有帮助。今天小编就跟大家分享一些关于销售漏斗的知识,希望能帮 ...
2020-07-22文章来源:接地气学堂 作者:接地气的陈老师 很多同学最怕听“建模型”仨字。尤其是建立“业务分析模型”。往往自己辛辛苦苦搞得LR、SVM、CNN被业务方狂喷:你这都是啥东西!脱离业务!不切实际!所以到 ...
2020-07-22
在机器学习中,因为决策树的算法是十分给力,因此使用决策树能够帮助我们解决很多的问题。决策树的算法分为很多种,今天小编主要跟大家介绍一下决策树的分类算法。 一、决策树的概念 决策树,根据名字就能知 ...
2020-07-20python是一款功能强大的数据分析工具,上手比较简单,因此现在很多人都在学习和使用python。要想熟练应用python到工作和生活中,必须掌握python的基础知识,今天小编就与大家分享python 为什么用 # 号作注释符,希 ...
2020-07-20CDA数据分析师 出品 作者:Mika 数据:真达 后期:泽龙 【导读】今天我们用数据来聊一聊新一线城市。 Show me data,用数据说话 今天我们聊一聊 新一线城市 提到一线城市 ...
2020-07-20python之所以这么火,是因为python有许多功能强大的库,能帮助我们完成数据采集、数据挖掘、数据清洗、数据可视化等一系列操作。许多python库安装之后,为了保证使用效果,需要进行更新升级,由于安装的python库比 ...
2020-07-20在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21