京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python装饰器与递归算法详解
1、python装饰器
刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了。总结了一下解释得比较好的,通俗易懂的来说明一下:
小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣:
def sum1():
sum = 1 + 2
print(sum)
sum1()
此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了:
import time
def sum1():
start = time.clock()
sum = 1+2
print(sum)
end = time.clock()
print("time used:",end - start)
sum1()
运行之后,完美~~
可是随着继续翻看,小P对越来越多的函数感兴趣了,都想看下他们的运行时间如何,难道要一个一个的去改函数吗?当然不是!我们可以考虑重新定义一个函数timeit,将sum1的引用传递给他,然后在timeit中调用sum1并进行计时,这样,我们就达到了不改动sum1定义的目的,而且,不论小P看了多少个函数,我们都不用去修改函数定义了!
import time
def sum1():
sum = 1+ 2
print (sum)
def timeit(func):
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
timeit(sum1)
咂一看,没啥问题,可以运行!但是还是修改了一部分代码,把sum1() 改成了timeit(sum1)。这样的话,如果sum1在N处都被调用了,你就不得不去修改这N处的代码。所以,我们就需要杨sum1()具有和timeit(sum1)一样的效果,于是将timeit赋值给sum1。可是timeit是有参数的,所以需要找个方法去统一参数,将timeit(sum1)的返回值(计算运行时间的函数)赋值给sum1。
import time
def sum1():
sum = 1+ 2
print (sum)
def timeit(func):
def test():
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
return test
sum1 = timeit(sum1)
sum1()
这样一个简易的装饰器就做好了,我们只需要在定义sum1以后调用sum1之前,加上sum1= timeit(sum1),就可以达到计时的目的,这也就是装饰器的概念,看起来像是sum1被timeit装饰了!Python于是提供了一个语法糖来降低字符输入量。
import time
def timeit(func):
def test():
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
return test
@timeit
def sum1():
sum = 1+ 2
print (sum)
sum1()
重点关注第11行的@timeit,在定义上加上这一行与另外写sum1 = timeit(sum1)完全等价。
2、递归算法
递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法解决问题的特点:
(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
举个栗子:对一个数字进行除2求值,直到小于等于1时退出并输出结果
def divide(n,val):
n += 1
print(val)
if val / 2 > 1:
aa = divide(n,val/2)
print('the num is %d,aa is %f' % (n,aa))
print('the num is %d,val is %f' % (n,val))
return(val)
divide(0,50.0)
结果说明(不return时相当于嵌套循环,一层层进入在一层层退出):
50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 5,val is 3.125000
the num is 4,aa is 3.125000
the num is 4,val is 6.250000
the num is 3,aa is 6.250000
the num is 3,val is 12.500000
the num is 2,aa is 12.500000
the num is 2,val is 25.000000
the num is 1,aa is 25.000000
the num is 1,val is 50.000000
2、递归时return:
def divide(n,val):
n += 1
print(val)
if val / 2 > 1:
aa = divide(n,val/2)
print('the num is %d,aa is %f' % (n,aa))
return(aa)
print('the num is %d,val is %f' % (n,val))
return(val)
divide(0,50.0)
结果说明(return时就直接结束本次操作):
50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 4,aa is 1.562500
the num is 3,aa is 1.562500
the num is 2,aa is 1.562500
the num is 1,aa is 1.562500
用递归实现斐波那契函数
def feibo(first,second,stop,list):
if first >= stop or second >= stop:
return list
else:
sum = first + second
list.append(sum)
if sum <= stop:
return feibo(second,sum,stop,list)
return list
if __name__ == '__main__':
first = int(raw_input('please input the first number:'))
second = int(raw_input('please input the second number:'))
stop = int(raw_input('please input the stop number:'))
l = [first,second]
a = feibo(first,second,stop,l)
print(a)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20