京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代: 招商思路如何脑洞大开
开发区需要抢抓大数据时代带来的发展机遇,破解现有盲目招商的问题,可以从以下三方面做出尝试:
1、建立项目库,确保招商精准化
根据开发区产业定位,建立项目库,且要尽可能地囊括国际、国内相关产业(统计学里,分析的样本越是趋同于总体,得到的结果越是有效,而互联网时代,使取得总体数据具备了可能性)。除了项目本身的产业类别、产业规模、总部地址、员工人数、生产工业、所需配套、上下游产品链、产品的主要消费群体等相关数据外,还要收集项目管理者,甚至是员工的微博、微信、空间等数据,并且对数据做动态追踪。
因为,在大数据时代,相关关系分析将会变得至关重要。往往通过找出一个或多个关联物并监控它,就能预测未来。美国折扣零售商塔吉特将大数据相关关系分析用到极致。他们通过一个人的购物方式发现她是否怀孕,甚至能够比较准确地预测预产期,这样就能够在孕期的每个阶段给客户寄送相应的优惠券。
同理,我们通过对项目方相关信息(如产品种类、产品规模、员工人数、管理层人员动态等)的收集、分析,掌握
同类企业在投资出现变化时会出现的相关变动,对收集到的信息做相关分析,进而推测企业动向,从而为招商人员提供攻坚方向。
2、记录并分析招商日志,确保招商精细化
在大数据时代,在获取信息更加方便快捷的前提下,我们理应能够通过招商人员记录招商日志,并对招商日志进行分析挖掘数据的潜在价值,从而得出更加有效的招商方式,使招商不再盲目,并且真正指引年轻的招商人员更快更好地从事招商工作。
招商日志应该至少包括以下三方面内容:一是招商档案的建立。即明确招商过程中的5W+1H,即Why(如,为什么
选择这个项目而不是别的项目、这个项目为什么要重新选址、为什么这个项目有可能选择你这个开发区而不是别的地方等);What(如,这个项目是什么类型、生产什么产品或提供什么服务、项目洽谈中对方提出了什么样的要求,你又是如何作答的等);Where(如,洽谈发生在什么地点、当时的洽谈环境如何、是否踏勘现场、项目选址选在哪儿、土地性质如何、是否需要土地修编及调整等);When(如,初次洽谈是什么时候,再次拜访的时间间隔及每次洽谈的时长等);Who(如,谁牵头洽谈该项目,过程中配合者有哪些,项目方代表是谁,什么职务等),How(如,事前是如何了解项目情况的、事中是如何跟进的、事后是如何保持联系联络感情的等)。二是招商成功的经验。若项目成功引进,则要记录在招商人员看来的成功经验是什么,知道“是什么”让项目方做出了选择,要善于洞察项目方做决定背后的真正原因。三是招商失败的教训。至于没有成功引进的项目,我们也要记录此次招商失败的原因,并尽量进行分类记录,如分清客观原因(如土地空间不足够、政策优惠力度不够、提供配套不足等)和主观原因(如招商人员没有及时掌握项目方的精确的投资信息、投资需求等)。
这些在大数据时代被称为数据废气,表面看起来没有什么价值,若能理解其更深层次的价值,加以巧妙利用(如分类归纳不同产业项目招商失败的原因,用数据来说明真相,招商人员在了解到真相之后,形成相应的风险预期,当下次遇到类似问题时,就可以提前做出准备尽力避免)则可以不
断提升招商服务水平,提高招商成功率。
3、巧妙利用数据,确保招商精确化
大数据时代将要释放出的巨大价值使得我们选择大数据的理念和方法不再是一种权衡,而是通往未来的必然改变。我们所做的各种信息收集、整理的工作,目的在于通过分析让“数据”为开发区招商服务,那么如何分析数据,是必然要思考的问题。
美国一个征信机构益百利(Experian)有一种服务,可以根据个人的信用卡交易记录预测个人的收入情况。证明一个人的收入状况要花10美元左右,但是益百利的预测结果售价不足1美元。所以有时候,通过代理取得数据信息比自己去操作繁琐的程序要便宜的多。因此,并不是要每个开发区去组建一个专门的数据分析团队,高额聘请专业大数据算法师,购买收集、存储大数据的设备,开发区可以向代理机构购买相关数据。当然,代理机构的崛起、数据安全相关协议等会随着大数据的广泛利用而逐步规范。也许我们现在还做不到项目数据库的建立,但是可以从招商日志做起,建立招商档案,为大数据招商收集原始数据。
大数据是一种资源,也是一种工具。它告知信息但不解释信息,它指导人们去理解,但有时也会引起误解,这取决于是否被正确使用。本文只对大数据时代开发区招商方面略作探析,至于开发区如何顺应新时代的要求、依旧保持“弄潮儿”的优势地位,还有待深入思考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16