
【R语言】单一样本推断问题
非参数统计概念:
在实际问题中,对数据的分布形式和统计模型难以作出比较明确的假定,最多只能对总体的分布做出类似于连续性型分布或者对某点对称等一般性假定。这种不假设总体分布的具体形式,尽量从数据(样本)本身获得所需要的信息,通过估计而获得分布的结构,并逐步建立对事物的数学描述和统计建模的方法称为非参数方法。
单一样本的推断问题:
符号检验
符号检验所关心的就是通过符号“+”“-”的个数来进行统计推断
eg:假设某城市16座欲出售的楼盘均价(单位:百元 /平方米)
36 32 31 25 28 36 40 32 41 26 35 35 32 87 33 35
问:该地盘楼盘价格是否与媒体公布的3700元/平方米说法相符?
分析:
总体均值的点估计是样本均值,总体中位数的点估计是样本中位数,由于中位数的稳健性,将37理解为总体的中位数,则假设问题为:
H0:M=37 H1: M不等于37(待检验的中位数值)
假设:
S+:位于37右边的个数 S-: 位于37左边的个数
令K=min{S+,S-},且K服从p=0.5的二项分布
R代码:
##1.S-为检验统计量
sign1.test = function(x,pi,q0){
s1 = sum(x<q0) #S-的个数
s2 = sum(x>q0) #S+的个数
n = s1+s2
p1 = pbinom(s1,n,pi) ### 取检验统计量K=S-,计算 P(K<=s1)
p2 = 1-pbinom(s1-1,n,pi) ### 计算 P(K>=s1)
if(p1 < p2){ m1 = "one tail test:H1: Q > q0"
}else{
m1 = "one tail test:H1: Q < q0"
}
p.value = min(p1,p2)
m2 = "two tails test"
p.value2 = 2*p.value
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
##以上便构建了符号检验的函数,接下来可以直接调用
data=c(36,31,25,28,36,40,32,41,26,35,35,32,87,33,35,32)##赋值
x=median(data)##获取样本中位数
sign1.test(data,0.5,37)
结果解读:
p=0.02127<0.05(显著性水平),拒绝H0,认为该地盘楼盘价格是否与媒体公布的3700元/平方米存在显著差异。
趋势检验
对于趋势分析,我们用一些数对来反映前后数据的变化。为保证数对同分布,前后两个数的间隔应该固定;为保证数对不受局部干扰,前后两个数的间隔应该较大。Cox-Staut趋势检验,是以数列中位于中间位置的数为拆分点,前后两两组成数对。
例:一个住宅小区的夜间噪音长期一直保持在30分贝。后来附近有建筑工地施工。数据是连续12天夜间在该小区所测得的噪声水平(分贝)。
30,31,33,35,31,30,68,60,65,67,66,64
请问:该建筑工地是否提高了小区的噪声水平?
建立假设:
Ho:该建筑工地没有提高小区的噪声水平
H1:该建筑工地提高了小区的噪声水平
检验统计量选取:
S=min{S+,S-}
S+:每一数对前后两值之差为正的个数
S-:每一数对前后两值之差为负的个数
R代码:
CS.test = function(x){
m = length(x)
c = if(m/2-round(m/2)==0){m/2}else{(m+1)/2} ### 此处亦可用floor(m/2)代替round(m/2)
d = if(m/2-round(m/2)==0){x[1:c]-x[(c+1):m]}else{x[1:(c-1)]-x[(c+1):m]}
n1 = length(d[which(d > 0)]) ### n1 = length(which(d > 0))
n2 = length(d[which(d < 0)])
n = n1+n2
s1 = sum(sign(d)== 1)
s2 = sum(sign(d)== -1)
if(n1 > n2){
m1 = "one tail test:H1: decreasing"
p.value = pbinom(n2,n,0.5)
}else{
m1 = "one tail test:H1: increasing"
p.value = pbinom(n1,n,0.5)
}
m2 = "two tails test"
s = min(s1,s2)
p.value2 = 2*pbinom(s,n,0.5)
if(n1==n2){p.value = 0.5;p.value2 = 1}
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
上述就是Cox-Staut检验的算法代码
代入数据:
x=c(30,31,33,35,31,30,68,60,65,67,66,64)
结果分析:
单边检验P=0.015625<0.05(显著性水平)
故拒绝H0,认为该建筑工地提高了小区的噪声水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15