京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—岭回归(Ridge Regression)
一、一般线性回归遇到的问题
在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:
预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量
时,最小二乘回归会有较小的方差
时,容易产生过拟合
时,最小二乘回归得不到有意义的结果
模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择。
以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明:

(摘自:机器学习实战)
方差指的是模型之间的差异,而偏差指的是模型预测值和数据之间的差异。我们需要找到方差和偏差的折中。
二、岭回归的概念
在进行特征选择时,一般有三种方式:
子集选择
收缩方式(Shrinkage method),又称为正则化(Regularization)。主要包括岭回归个lasso回归。
维数缩减
岭回归(Ridge Regression)是在平方误差的基础上增加正则项

通过确定
的值可以使得在方差和偏差之间达到平衡:随着
的增大,模型方差减小而偏差增大。
对w求导,结果为

令其为0,可求w得的值:

三、实验的过程
我们去探讨一下取不同的对整个模型的影响。

MATLAB代码
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 岭回归(Ridge Regression) 数据分析师培训
%导入数据
data = load('abalone.txt');
[m,n] = size(data);
dataX = data(:,1:8);%特征
dataY = data(:,9);%标签
%标准化
yMeans = mean(dataY);
for i = 1:m
yMat(i,:) = dataY(i,:)-yMeans;
end
xMeans = mean(dataX);
xVars = var(dataX);
for i = 1:m
xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
end
% 运算30次
testNum = 30;
weights = zeros(testNum, n-1);
for i = 1:testNum
w = ridgeRegression(xMat, yMat, exp(i-10));
weights(i,:) = w';
end
% 画出随着参数lam
hold on
axis([-9 20 -1.0 2.5]);
xlabel log(lam);
ylabel weights;
for i = 1:n-1
x = -9:20;
y(1,:) = weights(:,i)';
plot(x,y);
end
岭回归求回归系数的函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ w ] = ridgeRegression( x, y, lam )
xTx = x'*x;
[m,n] = size(xTx);
temp = xTx + eye(m,n)*lam;
if det(temp) == 0
disp('This matrix is singular, cannot do inverse');
end
w = temp^(-1)*x'*y;
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11