
在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务。请在使用相关函数之前,安装并正确引用e1071包。该包中最重要的一个函数就是用来建立支持向量机模型的svm()函数。我们将结合后面的例子来演示它的用法。
下面这个例子中的数据源于1936年费希尔发表的一篇重要论文。彼时他收集了三种鸢尾花(分别标记为setosa、versicolor和virginica)的花萼和花瓣数据。包括花萼的长度和宽度,以及花瓣的长度和宽度。我们将根据这四个特征来建立支持向量机模型从而实现对三种鸢尾花的分类判别任务。
有关数据可以从datasets软件包中的iris数据集里获取,下面我们演示性地列出了前5行数据。成功载入数据后,易见其中共包含了150个样本(被标记为setosa、versicolor和virginica的样本各50个),以及四个样本特征,分别是Sepal.Length、Sepal.Width、Petal.Length和Petal.Width。
在正式建模之前,我们也可以通过一个图型来初步判定一下数据的分布情况,为此在R中使用如下代码来绘制(仅选择Petal.Length和Petal.Width这两个特征时)数据的划分情况。
[plain] view plain copy
> library(lattice)
> xyplot(Petal.Length ~ Petal.Width, data = iris, groups = Species,
+ auto.key=list(corner=c(1,0)))
上述代码的执行结果如图14-13所示,从中不难发现,标记为setosa的鸢尾花可以很容易地被划分出来。但仅使用Petal.Length和Petal.Width这两个特征时,versicolor和virginica之间尚不是线性可分的。
函数svm()在建立支持向量机分类模型时有两种方式。第一种是根据既定公式建立模型,此时的函数使用格式为
[plain] view plain copy
svm(formula, data= NULL, subset, na.action = na.omit , scale= TRUE)
其中,formula代表的是函数模型的形式,data代表的是在模型中包含的有变量的一组可选格式数据。参数na.action用于指定当样本数据中存在无效的空数据时系统应该进行的处理。默认值na.omit表明程序会忽略那些数据缺失的样本。另外一个可选的赋值是na.fail,它指示系统在遇到空数据时给出一条错误信息。参数scale为一个逻辑向量,指定特征数据是否需要标准化(默认标准化为均值0,方差1)。索引向量subset用于指定那些将被来训练模型的采样数据。
例如,我们已经知道,仅使用Petal.Length和Petal.Width这两个特征时标记为setosa和的鸢尾花versicolor是线性可分的,所以可以用下面的代码来构建SVM模型。
然后我们可以使用下面的代码来对模型进行图形化展示,其执行结果如图14-14所示。
[plain] view plain copy
> plot(model1, subdata, Petal.Length ~ Petal.Width)
在使用第一种格式建立模型时,若使用数据中的全部特征变量作为模型特征变量时,可以简要地使用“Species~.”中的“.”代替全部的特征变量。例如下面的代码就利用了全部四种特征来对三种鸢尾花进行分类。
[plain] view plain copy
> model2 <- svm(Species ~ ., data = iris)
若要显示模型的构建情况,使用summary()函数是一个不错的选择。来看下面这段示例代码及其输出结果。
通过summary函数可以得到关于模型的相关信息。其中,SVM-Type项目说明本模型的类别为C分类器模型;SVM-Kernel项目说明本模型所使用的核函数为高斯内积函数且核函数中参数gamma的取值为0.25;cost项目说明本模型确定的约束违反成本为l。而且我们还可以看到,模型找到了51个支持向量:第一类包含有8个支持向量,第二类包含有22个支持向量,第三类包含21个支持向量。最后一行说明模型中的三个类别分别为setosa、versicolor和virginica。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09