京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS科普 | 统计描述
统计描述的目的就是了解数据的基本特征和分布规律,为进一步合理地选择统计方法提供依据。常用的有Frequencies、Descriptives
和Explore过程。
一、Frequencies过程
该过程用于产生数据的频数表,输出描述集中位置、离散趋势及分布形状等的指标,并能给出百分位数、绘制频数图等。
操作步骤:依次点击分析---描述统计---频率(图1),激活Frequencies对话框(图2)。将需要进行统计描述的变量从左侧变量框选至右侧变量框(以身高为例),点击“统计量”按钮,弹出图3对话框,根据需要勾选,通常选择“均值、标准差、最小值、最大值、偏度、峰度”,点击“继续”回到Frequencies对话框,点击“图表”,弹出图4对话框,选择“直方图”,并勾选“在直方图上显示正态曲线”,点击“继续”回到Frequencies对话框,点击“确定”按钮,即输出统计结果图5、6、7。

图1 激活Frequencies对话框

图2 Frequencies对话框

图3 统计量对话框

图4 图表对话框
结果解释:图5给出了样本量、均数、标准差、最大值、最小值和峰度等;图6为频数表,图7为相应的直方图,由于结果简单,易于理解,不再赘述。
图5 统计量
图6 频数表

图7 直方图
二、Descriptives过程
该过程对数值变量进行一般性的描述。其对话框与Frequencies类似。
操作步骤:依次点击分析---描述统计---描述(图8),激活Descriptives对话框(图9)。将需要进行统计描述的变量从左侧变量框选至右侧变量框(以年龄为例)。点击“选项”按钮,弹出图10对话框,根据需要勾选,通常选择“均值、标准差、最小值、最大值”,点击“继续”回到Descriptives对话框,点击“确定”按钮,即输出统计结果图11。因结果简单,不再解释。

图8 激活Descriptives对话框

图9 Descriptives对话框

图10选项对话框

图11 Descriptives结果
三、Explore过程
该过程使用描述性统计量和图形对变量进行探索性分析,还可以按照某个变量分组后描述其他变量的属性,可以快速获取资料的基本信息,为下一步选择统计分析方法提供依据。
操作步骤:依次点击“分析---描述统计---探索”激活Explore对话框(图12)。将需要描述的变量选至右侧因变量列表(以SAS得分为例),将分组变量选至因子列表(以性别分组),将编号选至标注个案。点击“统计量”按钮,弹出图13对话框,勾选“描述性、界外值、百分位数”,点击“继续”回到Explore对话框,点击“绘制”,弹出图14对话框,选择“按因子水平分组”、“直方图”、“带检验的正态图”,点击“继续”回到Explore对话框,点击“确定”按钮,即输出统计结果图11。
结果解释:SPSS首先给出按照性别分组情况(男、女各自样本量及所占比例)、描述性统计量、百分位数以及5个最大和最小值,因结果简单易懂,故不再截图展示;还显示正态检验的结果图15,红圈所示P>0.05说明服从正态分布,如果P<0.05,说明不服从正态分布;另外还有直方图、正态Q-Q图均显示正态分布情况,篇幅限制,不再截图。
图12 Explore对话框

图13统计量对话框

图14绘图对话框

图15 正态性检验结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21