
SAS、spss进行Durbin-Watson检验
1.首先要知道你用的哪一个SAS子程序。
2.如果是PROC NLIN,那么非常遗憾,它没有现成的DW统计量,但是你可以在OUTPUT选项中在输出数据集里面输出残差。
3.DW实际上是对残差做一阶自相关判断,因此你完全可以根据公式用SAS中的DATA步来完成代码开发,参考代码如下:
data nkwilling;
do i=1 to 100;
e=normal(0);
output;
end;
run;
data DW;
set nkwilling end=last;
e_lag=lag(e);
e_dif=sum(e,-e_lag);
t1=e_dif*e_dif;
t2=e*e;
if _n_=1 then do;dw1=t1;dw2=t2;end;
else do;dw1+t1;dw2+t2;end;
if last then dw=dw1/dw2;
run;
再参考DW有关自相关的范围,我记得好像是0-4,作出判断。
匆忙写的,你再参考有关书籍做一下修改。
sas 和spss都能做
检验图就是残差图
以预测值Y为横轴,以y与预测值Y之间的误差et为纵轴(或学生化残差与拟和值或一个自变量),绘制残差的散点图。如果散点呈现出明显的规律性,则认为存在自相关性或者非线性或者非常数方差的问题。
DW是0<D<4,统计学意义如下:
①当残差与自变量互为独立时,D=2 或 DW 越接近2,判断无自相关性把握越大。
②当相邻两点的残差为正相关时,D<2,DW 越接近于0,正自相关性越强。
③当相邻两点的残差为负相关时,D>2,DW 越接近于4,负自相关性越强。
判断。根据样本容量n 和解释变量的数目p 查DW 分布表,得下临界值L D 和上临界值U D ,
并依下列准则判断扰动项的自相关情形。
(1)如果0<DW< L D ,则拒绝零假设,扰动项存在一阶正自相关。DW 越接近于0,正自相关
性越强。
(2)如果L D <DW< U D ,则无法判断是否有自相关。
(3)如果U D <DW<4- U D ,则接受零假设,扰动项不存在一阶正自相关。DW 越接近2,判断
无自相关性把握越大。
(4)如果4- U D <DW<4- L D ,则无法判断是否有自相关。
(5) 如果4- L D <DW<4,则拒绝零假设,扰动项存在一阶负自相关。DW 越接近于4,负自
相关性越强。
检验不难,据不完全统计,PROC REG/AUTOREG/MODEL都有选项输出统计量和p-值。你要是非线性的,可以用PROC MODEL。其实Durbin-Watson检验的统计量也可以利用残差根据公式手工算。
但是检验图是个什么概念不才就一点也不懂了,一个模型不就只有一个Durbin-Watson值吗?
option nocenter;
dm ‘log;clear;output;clear’;
proc import datafile=”c:\example.xls” replace
out=one;
getnames=yes;
data one; set one;
proc nlin data=one;
parms b1=0.2 b2=-0.2 b3=-0.4 ;
AOld = a1;anew=a2;
hdold=hd1;temp = AOld / ANew;
do anew = (1+a1) to a2 by 1;
HdNew = exp(temp*log(hdold)+(1-temp)*(b1+b2/aold+b3*hdold)); AOld = ANew;
hdold=hdnew;
end;
model hd2 = HdNew;
output out=two predicted=hd2hat;
我应该如何在上面代码中添加Durbin-Watson检验呢?
用proc reg就好了,在option那里加一个“DW
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02