
一、概述
朴素贝叶斯分类算法是基于概率论中的贝叶斯公式得到的,也是比较常用的一种算法,而朴素代表的是属性之间的独立性,这样联合概率可以转换成各概率分量的乘积。
二、算法思想
其实这个算法的思想就是贝叶斯公式,如果不是很了解也没什么关系,只要看点例子就明白了,但由于这里只想给大家提供一些实用代码,因此就不仔细说例子了,《机器学习实战》中的那个灰石头的例子就不错,另外,如果还感觉不是很清楚,推荐看一下《数据挖掘导论》中贝叶斯分类器部分。
三、实例算法
不说废话了,现在开始介绍朴素贝叶斯的matlab代码编写,这里我们的目标是利用朴素贝叶斯进行文档分类,即确定该文档是侮辱类还是非侮辱类,分别以1和0表示。
1. 创建测试数据
%% 建立测试数据
postingList = [{‘my dog has flea problems help please’};
{‘maybe not take him to dog park stupid’};
{‘my dalmation is so cute I love him’};
{‘stop posting stupid worthless garbage’};
{‘mr licks ate my steak how to stop him’};
{‘quit buying worthless dog food stupid’}];
classVec = [0, 1, 0, 1, 0, 1];
意义应该还是比较明确的,就是说2,4,6是带有侮辱性语句的文档
2. 创建无重复单词的列表
%% 创建无重复单词的列表
[m, n] = size(postingList);
VocabList = [];
for i = 1: m
tempstr = postingList{i};
str_split = regexp(tempstr, ‘W*s+’, ‘split’);
VocabList = [VocabList, str_split];
end
VocabList_unique = unique(VocabList);
可以看一下单词列表
>> VocabList_unique
VocabList_unique =
Columns 1 through 8
‘I’ ‘ate’ ‘buying’ ‘cute’ ‘dalmation’ ‘dog’ ‘flea’ ‘food’
Columns 9 through 16
‘garbage’ ‘has’ ‘help’ ‘him’ ‘how’ ‘is’ ‘licks’ ‘love’
Columns 17 through 24
‘maybe’ ‘mr’ ‘my’ ‘not’ ‘park’ ‘please’ ‘posting’ ‘problems’
Columns 25 through 32
‘quit’ ‘so’ ‘steak’ ‘stop’ ‘stupid’ ‘take’ ‘to’ ‘worthless’
3. 创建列表向量
由于单词不好进行表述,我们需要根据单词列表创建一个向量表示列表中的单词是否出现,出现用1表示,未出现用0表示。
setOfWords2Vec.m文件如下
function wordsVec = setOfWords2Vec(vocabList, inputSet)
vocabList = unique(vocabList);
inputSet = unique(inputSet);
Listnum = length(vocabList);
inputnum = length(inputSet);
wordsVec = zeros(1, Listnum);
for i = 1: inputnum
for j = 1: Listnum
if (strcmp(vocabList{j}, inputSet{i}))
wordsVec(j) = 1;
end
end
end
列表向量测试代码如下
%% 创建列表向量测试
tempstr = postingList{1};
str_split = regexp(tempstr, ‘W*s+’, ‘split’);
wordsVec = setOfWords2Vec(VocabList_unique, str_split);
测试结果如下
wordsVec =
Columns 1 through 14
0 0 0 0 0 1 1 0 0 1 1 0 0 0
Columns 15 through 28
0 0 0 0 1 0 0 1 0 1 0 0 0 0
Columns 29 through 32
0 0 0 0
上面的意思是测试postingList第一句’my dog has flea problems help please’
在单词表中的描述,对照上面的单词列表可以看到结果是正确的,比如wordsVec中的第六第七项为1,在单词表中表示的是dog 和 flea,这连个此时在上面那句话中出现的。
4. 贝叶斯分类函数编写
trainNB0.m文件
function [p0Vect, p1Vect, pAbusive] = trainNB0(trainMatrix, trainCategory)
[m, n] = size(trainMatrix);
pAbusive = sum(trainCategory) / m;
p1words = trainMatrix(find(trainCategory), :);
p0words = trainMatrix(find(1 – trainCategory), :);
p0wordscount = sum(p0words, 1) + 1; % 加1是为了防止出现0概率
p1wordscount = sum(p1words, 1) + 1;
p0Vect = log(p0wordscount ./ sum(p0wordscount));
p1Vect = log(p1wordscount ./ sum(p1wordscount));
这段代码还是要说明一下的
(1)注释位置那句对每个单词的出现初始化为1,就是说就算单词没出现,也将其计算为1,这是防止出现0概率,导致乘积为0。当然避免这个的方法有很多,每本书都不太一样,这里的+1采用的是Laplace平滑方法。
(2)最后算概率加了个log是减少其动态范围。
这两个都是为了实际应用对代码进行的修改,也就是说,就基本原理而言,不需要+1和增加log。
下面,我们对这个代码进行测试
%% 测试trainNB0
trainMatrix = [];
for i = 1: m
tempstr = postingList{i};
str_split = regexp(tempstr, ‘W*s+’, ‘split’);
wordsVec = setOfWords2Vec(VocabList_unique, str_split);
trainMatrix = [trainMatrix;wordsVec];
end
[p0V, p1V, pAb] = trainNB0(trainMatrix, classVec);
p0V代表0分类下,每个单词的出现概率,也就是先验概率(由于用了log,所以是负数,并且由于+1,故没有无穷大项目)
p0V =
Columns 1 through 8
-3.3322 -3.3322 -4.0254 -3.3322 -3.3322 -3.3322 -3.3322 -4.0254
Columns 9 through 16
-4.0254 -3.3322 -3.3322 -2.9267 -3.3322 -3.3322 -3.3322 -3.3322
Columns 17 through 24
-4.0254 -3.3322 -2.6391 -4.0254 -4.0254 -3.3322 -4.0254 -3.3322
Columns 25 through 32
-4.0254 -3.3322 -3.3322 -3.3322 -4.0254 -4.0254 -3.3322 -4.0254
p1V意义类似
p1V =
Columns 1 through 8
-3.9318 -3.9318 -3.2387 -3.9318 -3.9318 -2.8332 -3.9318 -3.2387
Columns 9 through 16
-3.2387 -3.9318 -3.9318 -3.2387 -3.9318 -3.9318 -3.9318 -3.9318
Columns 17 through 24
-3.2387 -3.9318 -3.9318 -3.2387 -3.2387 -3.9318 -3.2387 -3.9318
Columns 25 through 32
-3.2387 -3.9318 -3.9318 -3.2387 -2.5455 -3.2387 -3.2387 -2.8332
pAb代表的是分类为1的文件占所有文件的比例
pAb = 0.5
这个很明显,因为测试数据中有三个分类为1,并且一个有6项。
5. 分类测试
训练部分的代码已经写完了,下面我们的分类器就可以使用了,利用贝叶斯公式计算p(c | w)并比较大小可以确定分类c。
对于本例来说
p(w|0) = 待分类语句中每个单词在0类出现的概率的乘积
p(w|1) = 待分类语句中每个单词在1类出现的概率的乘积
p(0|w) = p(w|0)*p(0) / p(w)
p(1|w) = p(w|1)*p(1) / p(w)
如果p(0|w) > p(1|w)分类就是0,反之就是1
代码如下
classifyNB.m
function classRes = classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)
p1 = sum(vec2Classify .* p1Vec) + log(pClass1);
p0 = sum(vec2Classify .* p0Vec) + log(1 – pClass1);
if p1 > p0
classRes = 1;
else
classRes = 0;
end
说明:
由于前面的概率是以log形式表示的,所以乘积就变成了加法,还有就是p(w)不影响比较结果,因此未予计算。
测试代码如下
%% 进行分类测试
testEntry = ‘love my dalmation’;
str_split = regexp(testEntry, ‘W*s+’, ‘split’);
wordsVec1 = setOfWords2Vec(VocabList_unique, str_split);
classRes1 = classifyNB(wordsVec1, p0V, p1V, pAb);
testEntry = ‘stupid garbage’;
str_split = regexp(testEntry, ‘W*s+’, ‘split’);
wordsVec2 = setOfWords2Vec(VocabList_unique, str_split);
classRes2 = classifyNB(wordsVec2, p0V, p1V, pAb);
结果就是
classRes1 = 0
classRes2 = 1
也就是说,分类确定第二句带有侮辱性,其实从其中的stupid就可以看出
四、算法应用
前面就说过,这个算法应用很广,《实战》中给出了两个实例,一个是垃圾邮件分类,这个和我们这里做的文本分类非常类似,另外一个就是从个人广告中获取区域倾向。都是平时我们经常使用的功能,如果有兴趣可以自己编着试一下,很多还是挺有意思的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20