京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深入理解Python变量与常量
变量是计算机内存中的一块区域,变量可以存储规定范围内的值,而且值可以改变。基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中。常量是一块只读的内存区域,常量一旦被初始化就不能被改变。
变量命名字母、数字、下划线组成,不能以数字开头,前文有说不在赘述。
变量赋值
Python中的变量不需要声明,变量的赋值操作即是变量的声明和定义的过程。每个变量在内存中创建都包括变量的标识、名称、和数据这些信息。
Python中一次新的赋值,将创建一个新的变量。即使变量的名称相同,变量的标识并不同。
x = 1 #变量赋值定义一个变量x
print(id(x)) #打印变量x的标识
print(x+5) #使用变量
print("=========华丽的分割线=========")
x = 2 #量赋值定义一个变量x
print(id(x)) #此时的变量x已经是一个新的变量
print(x+5) #名称相同,但是使用的是新的变量x
继续赋值
x = 'hello python'
print(id(x))
print(x)
此时x又将成为一个新的变量,而且变量类型也由于所赋值的数据类型改变而改变。
此处,id()为Python的内置函数。
如果变量没有赋值,Python将认为该变量不存在。
Python支持多个变量同时赋值。
例如:
a = (1,2,3) #定义一个序列
x,y,z = a #把序列的值分别赋x、y、z
print("a : %d, b: %d, z:%d"%(x,y,z)) #打印结果
a, b, c = 1, 2, "john"
变量作用域
局部变量是只能在函数或者代码块内使用的变量,函数或者代码块一旦结束,局部变量的生命周期也将结束。局部变量的作用范围只有在局部变量被创建的函数内有效。
例如:在文件1中的fun()中定义了一个局部变量,则该局部变量只能被fun()访问,文件1中定义的fun2()不能访问,也不能被文件2访问。
#fileName:file1
def fun():
local_var = 100 #定义一个局部变量
print(local_var)
def fun2():
zero = local_var - 100 #fun2中使用局部变量(不可以)
print("get zero : %d"%zero)
fun()
#fun2()
print("local_var -1 = %d"%(local_var - 1)) #文件1中使用局部变量(不可以)
################################
#Traceback (most recent call last):
# File "E:/python/file1.py", line 10, in <module>
# print("local_var -1 = %d"%(local_var - 1))
#NameError: name 'local_var' is not defined
################################
#Traceback (most recent call last):
# File "E:/python/file1.py", line 9, in <module>
# fun2()
# File "E:/lichenli/python/file1.py", line 6, in fun2
# zero = local_var - 100
#NameError: name 'local_var' is not defined
################################
#fileName:file2
import file1
file1.fun()
print(local_var)
########################
#运行结果
#100
#Traceback (most recent call last):
# File "E:\python\file2.py", line 4, in <module>
# print(local_var)
#NameError: name 'local_var' is not defined
########################
fun()中定义的局部变量就只有fun能够访问。
全局变量是能够被不同函数、类或文件共享的变量,在函数之外定义的变量都叫做全局变量。全局变量可以被文件内任何函数和外部文件访问
#fileName:file1
g_num1 = 1 #定义全局变量
g_num2 = 2 #定义全局变量
def add_num():
global g_num1 #引用全局变量
g_num1 = 3 #修改全局变量的值
result = g_num1 + 1
print("result : %d"%result)
def sub_num():
global g_num2
g_num2 = 5
result = g_num2 - 3
print("result : %d"%result)
add_num()
sub_num()
print("g_num1:%d "%g_num1)
print("g_num2:%d "%g_num2)
#result : 4 result为局部变量
#result : 2
#g_num1:3 全局变量g_num1在执行add_num()函数时被改变
#g_num2:5 全局变量g_num2在执行sub_num()函数时被改变
global保留字用于引用全局变量,如果不适用global关键字,在函数中再为g_num1赋值时将被解释为定义了一个局部变量g_num1。
#添加到sub_num()函数定义之后,add_num()函数调用之前
def other():
result = g_num1 + 2 #直接适用全局变量不改变全局变量的值OK
print("result : %d"%result)
other()
#######################
#result : 3
#result : 4
#result : 2
#g_num1:3
#g_num2:5
#######################
#添加到sub_num()函数定义之后,add_num()函数调用之前
def other():
g_num1 = 10
result = g_num1 + 2
print("result : %d"%result)
other()
####################
#result : 12
#result : 4
#result : 2
#g_num1:3
#g_num2:5
####################
在文件2中访问全局变量。
#fileName:file2
import file1
file1.add_num() #g_num1被改变
test = file1.g_num1 + 1
print("test :%d"%test)
应该尽量避免使用全局变量。不同的模块可以自由的访问全局变量,可能会导致全局变量的不可预知性。
全局变量降低了函数或者模块之间的通用性,不同的函数或模块都要依赖于全局变量。同样,全局变量降低了代码的可读性,阅读者可能不知道调用的某个变量是全局变量。
常量
常量是一旦初始化之后就不能修改的固定值。例如:数字"5",字符串"abc"都是常量。
Python中并没有提供定义常量的保留字。Python是一门功能强大的语言,可以自己定义一个常量类来实现常量的功能。
#fileName:const.py
class _const:
class ConstError(TypeError):pass
def __setattr__(self,name,value):
#if self.__dict__.has_key(name): 3.x之后has_key被废弃
if name in self.__dict__:
raise self.ConstError("Can't rebind const(%s)"%name)
self.__dict__[name] = value
import sys
sys.modules[__name__] = _const()
#fileName:const_2.py
import const
const.name='zhangsan'
const.name='lisi'
##################################
#Traceback (most recent call last):
# File "E:/python/const_2.py", line 4, in <module>
# const.name='lisi'
# File "E:/python\const.py", line 7, in __setattr__
# raise self.ConstError("Can't rebind const(%s)"%name)
#const._const.ConstError: Can't rebind const(name)
##################################
name这个变量已经被赋值"zhangsan"不能继续被赋值,所以抛出异常。raise保留字用于抛出异常。
以上这篇深入理解Python变量与常量就是小编分享给大家的全部内容了,希望能给大家一个参考
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25