京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你知道SAS也可以实现神经网络吗
神经网络的理论太长了,我就不写上来了,本次的代码是根据这本书《数据挖掘与应用》--张俊妮中神经网络这一章我做了思路的改动以及在原本代码的基础上,我把它封装好变成一个完整的宏。如果后面你们需要去了解sas神经网络这个proc neural过程也可以去购买这本来读,这本书没有配套的代码,所以代码也是我一个一个照着书敲来之后更改的。
说下这个代码的思路。
1、宏的第一步是采用神经网络建立广义线性模型,没有隐藏层,对数据做第一次的训练。这里的数据宏里面已经自动拆分成测试和训练了,你自己不用拆了。
2、算出神经网络建立广义线性模型的结果算出原始数据(训练集以及测试集)中每一个,客户的违约概率,之后算其ks值。
3、接下来就是循环隐藏层,从1循环到3,当然你要是觉得3层太少,你可以再设置,使用的是早停止(张俊妮的《数据挖掘与应用》的114页种有详细解释这个算法)法建立多层感知模型,那么这里第一次当然循环就是1层啦,那就是1层感知模型。
4、在当隐藏层为一层的时候,我们会拟合两次神经网络,第一次不输出结果,只是产出在隐藏层为一层的时候,挑选出最优的变量权重,拟合一个使用早停止法拟合出来的一个隐藏层为一层的神经网络模型,利用出来的变量规则,算出客户的概率之后算出模型的ks值。
5、到这里并不是要循环隐藏层为两层,还有呢,别着急,这时候隐藏层为一层的前提下,再使用,规则化法建模一层感知器模型,刚才的一层隐藏层使用的早停止法,现在使用的是规则化法,这时候规则化法去的权衰减常数的四种取值(规则化法也可以在书里的115页看到。)四种取值是:0.1 、0.01、0.001、0.0001然后循环之后算出,每个模型的ks记录。
6、所以循环一次隐藏层的层数,是得到4个模型的,早停止法一个,规则化法四个。
7、再一次循环隐藏层的2、3层。最终你可以在ks的汇总跑那个表中,选出训练数据以及测试数据ks都高的模型,作为你最终的模型。
%macromlps(dir,data,list_varname,y_var);
proc datasets lib=work;
delete alltrainfit allvalidfit vaild_ks_total train_ks_total;
run;
data M_CALL_DAY_TOTAL4_t;
set &data.;
indic=_n_;
run;
Proc sort data=M_CALL_DAY_TOTAL4_t; by &y_var.;run;
proc surveyselect data =M_CALL_DAY_TOTAL4_t method = srs rate=0.8
out = traindata;
strata &y_var.;
run;
proc sql;
create table validdata as
select * from
M_CALL_DAY_TOTAL4_t where indic not in (select indic from traindata);
quit;
data traindata;
set traindata;
drop SelectionProb SamplingWeight indic;
run;
data validdata;
set validdata;
drop indic;
run;
proc dmdb data=traindata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
proc dmdb data=validdata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
data decisionmatrix;
&y_var.=1;
to_1=0;
to_2=1;
output;
&y_var.=0;
to_1=1;
to_2=0;
output;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata ranscale=0.1random=0;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi glim;
nloptions maxiter=300;
train ;
code file="&dir.nncode_germancredit_glim.sas";
score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;
score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="glim";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="glim";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letnhidden=1;
%do%until(&nhidden.>3);
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
nloptions maxiter=300;
train estiter=1outest=weights_MLP&nhidden._ES outfit=assessment_MLP&&nhidden._ES;
/*code file="&dir.nncode_germancredit_glim.sas";*/
/*score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;*/
/*score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;*/
run;
proc sort data=assessment_MLP&&nhidden._ES;
by _VALOSS_;
RUN;
DATA BESTITER;
SET assessment_MLP&&nhidden._ES;
IF _N_=1;
RUN;
proc sql;
select _iter_ into:BESTITER from BESTITER;
quit;
data bestweights;
set weights_MLP&nhidden._ES;
if _type_="PARMS"AND _iter_=&bestiter.;
drop _tech_ _type_ _name_ _decay_ _seed_ _nobj_ _obj_ _objerr_
_averr_ _vnobj_ _vobj_ _vobjerr_ _vaverr_ _p_num_ _iter_;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
initial inest=bestweights;
train tech=none;
code file="&dir.nncode_germancredit_MLP&nhidden._ES.sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._ES outfit=trainfit_MLP&Nhidden._ES role=TRAIN;
score data=validdata nodmdb out=validdata_MLP&Nhidden._ES outfit=validfit_MLP&Nhidden._ES role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="ES";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="ES";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=1;
%do%until(&idecay.>4);
%if&idecay.=1%then%letcedcay=0.1;
%else%if&idecay.=2%then%letcedcay=0.01;
%else%if&idecay.=3%then%letcedcay=0.001;
%else%if&idecay.=4%then%letcedcay=0.0001;
%put&cedcay.;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
netoptions decay=&cedcay.;
nloptions maxiter=300;
prelim5maxiter=10;
train ;
code file="&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._WD&idecay.outfit=trainfit_MLP&Nhidden._WD&idecay.role=TRAIN;
score data=validdata nodmdb out=validdata__MLP&Nhidden._WD&idecay.outfit=validfit_MLP&Nhidden._WD&idecay.role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=%eval(&idecay.+1);
%end;
%letnhidden=%eval(&nhidden.+1);
%end;
%mend;
/*%mlps();*/
%letlist_varname=%str(N_M5_T09_CONRT N_M6_T09_CINRT N_N5_T82_COC_RC N_M5_T03_CONRT N_M3_T10_CONRC N_M3_T83_COC_RC
N_M3_T09_CINRTN_M6_T83_COT_RC N_M3_T83_CIT_RC N_M2_T10_CONRC N_M5_T03_CINRM N_M5_T10_CONRC N_M4_T02_CONRC N_M1_T08_CONRM
N_M3_T06_CINRM N_M2_T09_CONRT N_M6_T03_CONRT N_M5_T07_CINR );
%mlps(dir=F:data_1,data=raw.CALL_HOUR2_total7_woe,list_varname=&list_varname.,y_var=y);
最终的宏里面的list_vaname就不用填了,让他引用上面的宏list_vaname就可以了,list_vaname填的是你要去建立神经网络的变量,这里提醒一句哈,就是我尝试了不分组,分20组,分10组,分5组的效果,我建议是将变量分组好之后再丢进去比较好,但是我说不准到底是几组好,毕竟我和你的数据不一样。
data填的原始数据集。dir,填一个路径,这个路径存放的是最终的模型输出的规则,跟决策树那个score一个道理的。y_var填的是你的因变量。
最后看下你们最终要看的结果图长什么样子:
主要是要看这两个数据集的,这两个数据集长这样子:
ks值每个模型的ks值,p值是ks的p值,model对应的是哪个模型,GLIM是哪个广义线性模型,1_WD1代表的是隐藏层为1,权衰减为0.1对应的模型,在1_WD1,代表的隐藏层为1的时候对应的早停止发的模型,在2_WD1,代表的隐藏层为2的时候对应的早停止发的模型,找出你喜欢模型之后,去路径下面找规则代码就可以了。如果实在是这个代码格式跟你的sas不符的,可以在后台跟我要下txt的格式的代码。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24