
机器学习入门之多项式曲线拟合
机器学习和人工智能是最近几年特别火的领域,比如微软小冰、微软cortana、苹果siri、谷歌Now和alphaGo都使用了机器学习,使得他们的产品变得更加智能。
当然除了这些科技巨头,其实我们日常中也可能会使用到人工智能的产品,比如最常见的就是app上的个性化推荐,通过多维度分析用户的个性,给用推荐合适的内容,当然我个人是很讨厌推荐的,基本不点开看。下面我将分为两个部分来阐述多项式曲线拟合。
什么是多项式曲线拟合
如何评估拟合结果
首选我们以一个回归的例子展开阐述,现在假设给定一个训练集。这个训练集由x的N次观测组成,写作 ≡ (x1,…,xN)T,伴随这
对应的t的观测值,记作 ≡ (t1, …, tN )T,图1展示了由N = 10个数据点组成的图像。图1.2中 的输入数据集合
通过选择xn(n = 1, … , N)的值来生成。这些xn均匀分布在区间[0, 1],目标数 据集
的获得方式是:首先计算函数sin(2πx)的对应的值,然后给每个点增加一个小的符合高斯分布的随机噪声。
现在我们输入一个新值x来预测相应的t值。首选我们需要通过训练得出的多项式为y(x,w),y(x,w)是一个多项式:
y(x,w)是曲线多项式,它是一个逼近我们真实曲线的多项式。
在上式y(x,w)中M是多项式的阶数(order),xj表示x的j次幂。多项式系数w0,…,wM整体记作向量w。
注意,虽然多项式函数y(x, w)是x的一个非线性函数,它是系数w的一个线性函数。通过最小化误差函数 (error
function)来衡量了对于任意给定的w值,函数y(x, w)与训练集数据的差别。如图所示:
那么我可以知道误差函数为:
其中1/2是为了方便计算引入的。
我们可以通过选择使得E(w)尽量小的w来解决曲线拟合问题。由于误差函数是系数w的二次函数,因此它关于系数的导数是w的线性函数,所以误差函数的最小值有一个唯一解,记 作w∗,可以用解析的方式求出。最终的多项式函数由函数y(x, w∗)给出。
从图中我们可以看出M=0和M=1拟合效果很差,我们称之为欠拟合,M=3拟合看起来和真实
的曲线差不多,但是当M=9的时候,拟合曲线激烈震荡,我们称之为过拟合。如此看来,曲线拟合的泛化性和M的取值有直接的关系,而M得值我们称之为模型特征个数,比如说房子的价格和房子面积有关系,和房子方向(南北向)有关系,那么面积是房子价格数学模型中的一个特征,房子方向也是一个特征。
为了定量考察泛化性和M之间的关系,我们额外考虑一个测试集,这个测试集由100个数据 点组成,这100个数据点的生成方式与训练集的生成方式完全相同,但是在目标值中包含的随机 噪声的值不同。对于每个不同的M值,我用用根均方(RMS)来表示测试误差:
其中,除以N让我们能够以相同的基础对比不同大小的数据集,平方根确保了E_RMS与目标 变量t使用相同的规模和单位进行度量。下图展示了不同M值和E_RMS的关系:
从中我们可以看到,M=3-8测试误差和训练误差都比较低。能够取得较好的效果。
对已一个给定的模型复杂度,当数据集的规模增加时,过拟合问题变得不那么严重。另一种表
述方式是,数据集规模越大,我们能够用来拟合数据的模型就越复杂(即越灵活)。一个粗略的启发是,数据点的数量不应该小于模型的可调节参数的数量的若干倍(比如5或10)。下图是使用M
= 9的多项式对M = 15个数据点(左图)和N = 100个数据点(右图)通过最小化平方和
误差函数的方法得到的解。我们看到增大数据集的规模会减小过拟合问题。
因此,我们了解到增加数据可以减小过拟合问题。但是我们又引来新的问题,那就是不得不根据可得到的训练集的规模限制参数的数量。也可以说是根据待解决的问题的复杂性来选择模型的复杂性。我们可能期望建立相对复杂和灵活的模型,所以我们经常用来控制过拟合现象的一种技术是正则化(regularization)。这种技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值。这种惩罚项最简单的形式采用所有系数的平方和的形式。
其中∥w∥^2 ≡ wT w = w0^2 + w1^2 + … + wM^2 ,系数λ控制了正则化项相对于平方和误差项的重要性,被称之为正则化系数。通过引入正则化项可以减少过拟合的问题。下图是正则化系数对过拟合影响图:
使用正则化的误差函数,用M = 9的多项式拟合图中的数据集。其中正则化参数λ选择 了两个值,分别对应于ln λ = −18和ln λ = 0。因此引入正则化项也可以减少过拟合问题。
总结
在多项式虚线拟合过程中,我们遇到了两个问题,一个是欠拟合,一个是过拟合,对于欠拟合我们只需要增加参数(或者说特征)是拟合更加好,对于过拟合,我们提到了两种方式来解决,一个是增加数据,通过增加数据的方式增加引入更多的特征从而减少过拟合,另一种是增加正则化项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20