
Python深入学习之特殊方法与多范式
Python一切皆对象,但同时,Python还是一个多范式语言(multi-paradigm),你不仅可以使用面向对象的方式来编写程序,还可以用面向过程的方式来编写相同功能的程序(还有函数式、声明式等,我们暂不深入)。Python的多范式依赖于Python对象中的特殊方法(special method)。
特殊方法名的前后各有两个下划线。特殊方法又被成为魔法方法(magic method),定义了许多Python语法和表达方式,正如我们在下面的例子中将要看到的。当对象中定义了特殊方法的时候,Python也会对它们有“特殊优待”。比如定义了__init__()方法的类,会在创建对象的时候自动执行__init__()方法中的操作。
(可以通过dir()来查看对象所拥有的特殊方法,比如dir(1))
运算符
Python的运算符是通过调用对象的特殊方法实现的。比如:
实际执行了如下操作:
所以,在Python中,两个对象是否能进行加法运算,首先就要看相应的对象是否有__add__()方法。一旦相应的对象有__add__()方法,即使这个对象从数学上不可加,我们都可以用加法的形式,来表达obj.__add__()所定义的操作。在Python中,运算符起到简化书写的功能,但它依靠特殊方法实现。
Python不强制用户使用面向对象的编程方法。用户可以选择自己喜欢的使用方式(比如选择使用+符号,还是使用更加面向对象的__add__()方法)。特殊方法写起来总是要更费事一点。
尝试下面的操作,看看效果,再想想它的对应运算符
True.__or__(False)
内置函数
与运算符类似,许多内置函数也都是调用对象的特殊方法。比如
实际上做的是
相对与__len__(),内置函数len()也起到了简化书写的作用。
尝试下面的操作,想一下它的对应内置函数
(2.3).__int__()
表(list)元素引用
下面是我们常见的表元素引用方式
上面的程序运行到li[3]的时候,Python发现并理解[]符号,然后调用__getitem__()方法。
尝试看下面的操作,想想它的对应
{'a':1, 'b':2}.__delitem__('a')
函数
我们已经说过,在Python中,函数也是一种对象。实际上,任何一个有__call__()特殊方法的对象都被当作是函数。比如下面的例子:
add = SampleMore() # A function object
print(add(2)) # Call function
map(add, [2, 4, 5]) # Pass around function object
add为SampleMore类的一个对象,当被调用时,add执行加5的操作。add还可以作为函数对象,被传递给map()函数。
当然,我们还可以使用更“优美”的方式,想想是什么。
总结
对于内置的对象来说(比如整数、表、字符串等),它们所需要的特殊方法都已经在Python中准备好了。而用户自己定义的对象也可以通过增加特殊方法,来实现自定义的语法。特殊方法比较靠近Python的底层,许多Python功能的实现都要依赖于特殊方法。我们将在以后看到更多的例子。
Python的许多语法都是基于其面向对象模型的封装。对象模型是Python的骨架,是功能完备、火力强大的大黄蜂。但是Python也提供更加简洁的语法,让你使用不同的编程形态,从而在必要时隐藏一些面向对象的接口。正如我们看到的Camaro跑车,将自己威风的火药库收起来,提供方便人类使用的车门和座椅。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15