京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用Python api 函数写股票策略
写策略需要了解的语法包括两方面,一方面是语言本身的语法(包括相关库),另一方面是量化平台提供的api。量化平台提供的api帮助文件里都有了,本文主要介绍写策略经常用到的库(datetime、numpy、pandas)中的一些函数。
1、 利用datetime库做日期、时间操作
利用context.now可以获得当前策略运行的时间,返回的是datetime.datetime格式。datetime.datetime格式可以很方便的进行日期、时间操作。比如timedelta可以很方便的在日期上做日、小时、分钟、秒的运算。例如,需要策略运行时间1天前的时间,可以这样写:context.now+datetime.timedelta(days=-1),返回的便是一天前的时间。
2、 利用pandas做数据变频。
量化平台一般只提供分钟或者日频的数据,如果我们需要周、月的数据怎么办呢?pandas的resample函数可以很好的解决这个问题。举个例子,假如我们需要沪深300每月最后一个交易日的收盘价,我们可以这样写:
d= get_history(100,'1d','close')[‘000300.SH’].resample(‘m’,how=’last’)
3、利用set格式选取交集
有的时候我们利用不同标准会得到不同的股票池,如果想得到不同股票池的共同股票,那么可以使用set格式。Set格式可以很方便的进行交集、并集等集合运算。这里举一个例子,比如我们通过设置一定的财务数据条件会得到一个dataframe,记作df。df的列为股票代码,但可能并不都是我们所需的,比如我们只想得到沪深300的成份股,那么可以这样操作:1、s=get_index_constituents(‘000300.SH’) 得到沪深300的成份股。2、z=set(s) & set(df.columns) 得到交集z。3、得到的z是set格式,需要转换为list格式,可以这样操作 zl=list(z)。4、利用pandas 函数 筛选出我们需要的个股 d=df.loc[:zl] d即位我们所需要的数据。
4、 利用try…except跳过出错部分代码
有时候我们会遇到一些不是很重要的问题,但是由于遇到这类问题会报错,从而影响程序执行,这时我们希望的是忽略这些错误就可以了。下面举一个例子说明try…except 的用法。
比如:我们用p表示一只股票某一时刻的价格,v表示这只股票的成交量,我们想计算p/v,但是有可能该股票没有成交量(停牌,或者涨跌停了)这时直接计算就会出错,程序会跳出。这是我们可以try…except做如下处理:
try:d=p/v
except:d=0
意思就是如果计算p/v发生错误,那么就将d赋值为0
5、 利用pickle模块保存变量
有时候我们需要将当前工作空间的变量保存下来,这时可以使用pickle来解决,举个例子,假如目前工作空间有a,b,c三个变量,我们可以进行如下操作:1、f=open(‘file.pkl’,’wb’) 建立一个文件链接。2、import pickle;pickle.dump([a,b,c],f) 这样就可以保存了。读取时1、f=open(‘file.pkl’,’rb’) 2、import pickle;z=pickle.load([a,b,c],f) 这样将读取的变量都保存到了z变量中,通过z[0],z[1],z[2]可以获取a,b,c变量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14