京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言平均值,中位数和众数
R中的统计分析通过使用许多内置函数来执行的。这些函数大部分是R基础包的一部分。这些函数将R向量与参数一起作为输入,并在执行计算后给出结果。
我们在本章中讨论的是如何求平均值,中位数和众数。下面将分别一个个演示和讲解 -
1.平均值
平均值是通过取数值的总和并除以数据序列中的值的数量来计算。函数mean()用于在R中计算平均值。
语法
R中计算平均值的基本语法是 -
mean(x, trim = 0, na.rm = FALSE, ...)
R
以下是使用的参数的描述 -
x - 是输入向量。
trim - 用于从排序的向量的两端删除一些观测值。
na.rm - 用于从输入向量中删除缺少的值。
示例
# Create a vector.
x <- c(17,8,6,4.12,11,8,54,-11,18,-7)
# Find Mean.
result.mean <- mean(x)
print(result.mean)
R
当我们执行上述代码时,会产生以下结果 -
[1] 10.812
Shell
1.1.应用修剪选项
当提供trim参数时,向量中的值进行排序,然后从计算平均值中删除所需数量的观察值。
例如,当trim = 0.3时,每一端的3个值将从计算中删除以找到均值。
在这种情况下,排序的向量为(-21,-5,2,3,42,7,8,12,18,54),从用于计算平均值的向量中从左边删除:(-21,-5,2)和从右边删除:(12,18,54)这几个值。
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <- mean(x,trim = 0.3)
print(result.mean)
R
当我们执行上述代码时,会产生以下结果 -
[1] 5.55
Shell
1.2.应用NA选项
如果缺少值,则平均函数返回NA。要从计算中删除缺少的值,请使用na.rm = TRUE。 这意味着删除NA值。参考以下示例代码 -
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
# Find mean.
result.mean <- mean(x)
print(result.mean)
# Find mean dropping NA values.
result.mean <- mean(x,na.rm = TRUE)
print(result.mean)
R
当我们执行上述代码时,会产生以下结果 -
[1] NA
[1] 8.22
Shell
2.中位数
数据系列中的中间值被称为中位数。R中使用median()函数来计算中位数。
语法
R中计算位数的基本语法是 -
median(x, na.rm = FALSE)
R
以下是使用的参数的描述 -
x - 是输入向量。
na.rm - 用于从输入向量中删除缺少的值。
示例
# Create the vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find the median.
median.result <- median(x)
print(median.result)
R
当我们执行上述代码时,会产生以下结果 -
[1] 5.6
Shell
3.众数
众数是指给定的一组数据集合中出现次数最多的值。不同于平均值和中位数,众数可以同时具有数字和字符数据。
R没有标准的内置函数来计算众数。因此,我们将创建一个用户自定义函数来计算R中的数据集的众数。该函数将向量作为输入,并将众数值作为输出。
示例
# Create the function.
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Create the vector with numbers.
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
# Calculate the mode using the user function.
result <- getmode(v)
print(result)
# Create the vector with characters.
charv <- c("baidu.com","tmall.com","yiibai.com","qq.com","yiibai.com")
# Calculate the mode using the user function.
result <- getmode(charv)
print(result)
R
当我们执行上述代码时,会产生以下结果 -
[1] 2
[1] "yiibai.com"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01