
R语言回归分析之影响分析
说明
影响分析就是探查对估计有异常影响的数据,如果一个样本不遵从某个模型,但是其余数据遵从这个模型,称为这个样本点为强影响点,也称为高杠杆点,影响分析的一个重要功能就是区分这样的数据。
影响分析的方法有 dffits,dfbeta,dfbetas,cooks.distance,covratio,hatvalues,hat.
## 1. 回归分析
21个儿童测试值,x为月份,y为智力
intellect<-data.frame(
x=c(15, 26, 10, 9, 15, 20, 18, 11, 8, 20, 7,
9, 10, 11, 11, 10, 12, 42, 17, 11, 10),
y=c(95, 71, 83, 91, 102, 87, 93, 100, 104, 94, 113,
96, 83, 84, 102, 100, 105, 57, 121, 86, 100)
)
lm.sol<-lm(y~1+x, data=intellect)
summary(lm.sol)
Call:
lm(formula = y ~ 1 + x, data = intellect)
Residuals:
Min 1Q Median 3Q Max
-15.604 -8.731 1.396 4.523 30.285
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.8738 5.0678 21.681 7.31e-15 ***
x -1.1270 0.3102 -3.633 0.00177 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 11.02 on 19 degrees of freedom
Multiple R-squared: 0.41, Adjusted R-squared: 0.3789
F-statistic: 13.2 on 1 and 19 DF, p-value: 0.001769
分别通过了t检验与F检验
#回归诊断,调用influence.measures()并做回归诊断图
influence.measures(lm.sol)
Influence measures of
lm(formula = y ~ 1 + x, data = intellect) :
dfb.1_ dfb.x dffit cov.r cook.d hat inf
1 0.01664 0.00328 0.04127 1.166 8.97e-04 0.0479
2 0.18862 -0.33480 -0.40252 1.197 8.15e-02 0.1545
3 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
4 -0.20004 0.12788 -0.22433 1.115 2.56e-02 0.0705
5 0.07532 0.01487 0.18686 1.085 1.77e-02 0.0479
6 0.00113 -0.00503 -0.00857 1.201 3.88e-05 0.0726
7 0.00447 0.03266 0.07722 1.170 3.13e-03 0.0580
8 0.04430 -0.02250 0.05630 1.174 1.67e-03 0.0567
9 0.07907 -0.05427 0.08541 1.200 3.83e-03 0.0799
10 -0.02283 0.10141 0.17284 1.152 1.54e-02 0.0726
11 0.31560 -0.22889 0.33200 1.088 5.48e-02 0.0908
12 -0.08422 0.05384 -0.09445 1.183 4.68e-03 0.0705
13 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
14 -0.24681 0.12536 -0.31367 0.992 4.76e-02 0.0567
15 0.07968 -0.04047 0.10126 1.159 5.36e-03 0.0567
16 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
17 0.13328 -0.05493 0.18717 1.096 1.79e-02 0.0521
18 0.83112 -1.11275 -1.15578 2.959 6.78e-01 0.6516 *
19 0.14348 0.27317 0.85374 0.396 2.23e-01 0.0531 *
20 -0.20761 0.10544 -0.26385 1.043 3.45e-02 0.0567
21 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
influence.measures(lm.sol)
op <- par(mfrow=c(2,2), mar=0.4+c(4,4,1,1),
oma= c(0,0,2,0))
plot(lm.sol, 1:4)
par(op)
influence.measures(lm.sol)函数得到的回归诊断共有7列,
其中1,2列是dfbetas值(对应常数与变量x),
第三例是dffits的准则值,
第三例是covratio的准则值,
第五例是cook值,第6例是帽子值(高杠杆值),
第七例影响点的标记,
inf表明18,19号是强影响点。
对诊断图分析:
第一张图是残差图,残差的方差满足齐性。
第二张图是正态QQ图,除19号外基本都在直线上,也就是说除19号点外残差满足正态性。
第三张图标准差的平方根与预测值的散点图,19号样本的值大于1.5,说明19号样本可能是异常值点(0.95范围外)
第四张图给出了COOK距离值,说明18号点可能是强影响点(高杠杆点)
处理强影响点:首先,是否录入有误。其次,修正数据。如果无法判断是否有误,采用剔除与加权的办法进行修正数据。
n<-length(intellect$x)
weights<-rep(1, n); weights[18]<-0.5
lm.correct<-lm(y~1+x, data=intellect, subset=-19,
weights=weights)
summary(lm.correct)
Call:
lm(formula = y ~ 1 + x, data = intellect, subset = -19, weights = weights)
Weighted Residuals:
Min 1Q Median 3Q Max
-14.300 -7.539 2.700 5.183 12.229
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 108.8716 4.4290 24.58 2.67e-15 ***
x -1.1572 0.2937 -3.94 0.000959 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.617 on 18 degrees of freedom
Multiple R-squared: 0.4631, Adjusted R-squared: 0.4333
F-statistic: 15.53 on 1 and 18 DF, p-value: 0.0009594
在程序中,subset = -19表示去掉19样本。weights<-rep(1, n)所有点权赋为1,weights[18]<- 0.5,18号点为0.5,这样可以直观认为18号点对方程影响减少一半。
验证:两次计算的回归直线,和数据的散点图。
attach(intellect)
par(mai=c(0.8, 0.8, 0.2, 0.2))
plot(x, y, cex=1.2, pch=21, col="red", bg="orange")
abline(lm.sol, col="blue", lwd=2)
text(x[c(19, 18)], y[c(19, 18)],
label=c("19", "18"), adj=c(1.5, 0.3))
detach()
abline(lm.correct, col="red", lwd=2, lty=5)
legend(30, 120, c("Points", "Regression", "Correct Reg"),
pch=c(19, NA, NA), lty=c(NA, 1,5),
col=c("orange", "blue", "red"))
从图中可以看出,19号样本的残差过大,而18号样本对整体回归直线有较大的影响。
检验:看修正之后是否有效
op <- par(mfrow=c(2,2), mar=0.4+c(4,4,1,1), oma= c(0,0,2,0))
plot(lm.correct, 1:4)
par(op)
修正后的诊断图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11