
R语言回归分析之影响分析
说明
影响分析就是探查对估计有异常影响的数据,如果一个样本不遵从某个模型,但是其余数据遵从这个模型,称为这个样本点为强影响点,也称为高杠杆点,影响分析的一个重要功能就是区分这样的数据。
影响分析的方法有 dffits,dfbeta,dfbetas,cooks.distance,covratio,hatvalues,hat.
## 1. 回归分析
21个儿童测试值,x为月份,y为智力
intellect<-data.frame(
x=c(15, 26, 10, 9, 15, 20, 18, 11, 8, 20, 7,
9, 10, 11, 11, 10, 12, 42, 17, 11, 10),
y=c(95, 71, 83, 91, 102, 87, 93, 100, 104, 94, 113,
96, 83, 84, 102, 100, 105, 57, 121, 86, 100)
)
lm.sol<-lm(y~1+x, data=intellect)
summary(lm.sol)
Call:
lm(formula = y ~ 1 + x, data = intellect)
Residuals:
Min 1Q Median 3Q Max
-15.604 -8.731 1.396 4.523 30.285
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.8738 5.0678 21.681 7.31e-15 ***
x -1.1270 0.3102 -3.633 0.00177 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 11.02 on 19 degrees of freedom
Multiple R-squared: 0.41, Adjusted R-squared: 0.3789
F-statistic: 13.2 on 1 and 19 DF, p-value: 0.001769
分别通过了t检验与F检验
#回归诊断,调用influence.measures()并做回归诊断图
influence.measures(lm.sol)
Influence measures of
lm(formula = y ~ 1 + x, data = intellect) :
dfb.1_ dfb.x dffit cov.r cook.d hat inf
1 0.01664 0.00328 0.04127 1.166 8.97e-04 0.0479
2 0.18862 -0.33480 -0.40252 1.197 8.15e-02 0.1545
3 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
4 -0.20004 0.12788 -0.22433 1.115 2.56e-02 0.0705
5 0.07532 0.01487 0.18686 1.085 1.77e-02 0.0479
6 0.00113 -0.00503 -0.00857 1.201 3.88e-05 0.0726
7 0.00447 0.03266 0.07722 1.170 3.13e-03 0.0580
8 0.04430 -0.02250 0.05630 1.174 1.67e-03 0.0567
9 0.07907 -0.05427 0.08541 1.200 3.83e-03 0.0799
10 -0.02283 0.10141 0.17284 1.152 1.54e-02 0.0726
11 0.31560 -0.22889 0.33200 1.088 5.48e-02 0.0908
12 -0.08422 0.05384 -0.09445 1.183 4.68e-03 0.0705
13 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
14 -0.24681 0.12536 -0.31367 0.992 4.76e-02 0.0567
15 0.07968 -0.04047 0.10126 1.159 5.36e-03 0.0567
16 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
17 0.13328 -0.05493 0.18717 1.096 1.79e-02 0.0521
18 0.83112 -1.11275 -1.15578 2.959 6.78e-01 0.6516 *
19 0.14348 0.27317 0.85374 0.396 2.23e-01 0.0531 *
20 -0.20761 0.10544 -0.26385 1.043 3.45e-02 0.0567
21 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
influence.measures(lm.sol)
op <- par(mfrow=c(2,2), mar=0.4+c(4,4,1,1),
oma= c(0,0,2,0))
plot(lm.sol, 1:4)
par(op)
influence.measures(lm.sol)函数得到的回归诊断共有7列,
其中1,2列是dfbetas值(对应常数与变量x),
第三例是dffits的准则值,
第三例是covratio的准则值,
第五例是cook值,第6例是帽子值(高杠杆值),
第七例影响点的标记,
inf表明18,19号是强影响点。
对诊断图分析:
第一张图是残差图,残差的方差满足齐性。
第二张图是正态QQ图,除19号外基本都在直线上,也就是说除19号点外残差满足正态性。
第三张图标准差的平方根与预测值的散点图,19号样本的值大于1.5,说明19号样本可能是异常值点(0.95范围外)
第四张图给出了COOK距离值,说明18号点可能是强影响点(高杠杆点)
处理强影响点:首先,是否录入有误。其次,修正数据。如果无法判断是否有误,采用剔除与加权的办法进行修正数据。
n<-length(intellect$x)
weights<-rep(1, n); weights[18]<-0.5
lm.correct<-lm(y~1+x, data=intellect, subset=-19,
weights=weights)
summary(lm.correct)
Call:
lm(formula = y ~ 1 + x, data = intellect, subset = -19, weights = weights)
Weighted Residuals:
Min 1Q Median 3Q Max
-14.300 -7.539 2.700 5.183 12.229
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 108.8716 4.4290 24.58 2.67e-15 ***
x -1.1572 0.2937 -3.94 0.000959 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.617 on 18 degrees of freedom
Multiple R-squared: 0.4631, Adjusted R-squared: 0.4333
F-statistic: 15.53 on 1 and 18 DF, p-value: 0.0009594
在程序中,subset = -19表示去掉19样本。weights<-rep(1, n)所有点权赋为1,weights[18]<- 0.5,18号点为0.5,这样可以直观认为18号点对方程影响减少一半。
验证:两次计算的回归直线,和数据的散点图。
attach(intellect)
par(mai=c(0.8, 0.8, 0.2, 0.2))
plot(x, y, cex=1.2, pch=21, col="red", bg="orange")
abline(lm.sol, col="blue", lwd=2)
text(x[c(19, 18)], y[c(19, 18)],
label=c("19", "18"), adj=c(1.5, 0.3))
detach()
abline(lm.correct, col="red", lwd=2, lty=5)
legend(30, 120, c("Points", "Regression", "Correct Reg"),
pch=c(19, NA, NA), lty=c(NA, 1,5),
col=c("orange", "blue", "red"))
从图中可以看出,19号样本的残差过大,而18号样本对整体回归直线有较大的影响。
检验:看修正之后是否有效
op <- par(mfrow=c(2,2), mar=0.4+c(4,4,1,1), oma= c(0,0,2,0))
plot(lm.correct, 1:4)
par(op)
修正后的诊断图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08