
python字典多键值及重复键值的使用方法
下面小编就为大家带来一篇python字典多键值及重复键值的使用方法(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个才参考。
在Python中使用字典,格式如下:
dict={ key1:value1 , key2;value2 ...}
在实际访问字典值时的使用格式如下:
dict[key]
多键值
字典的多键值形式如下:
dict={(ke11,key12):value ,(key21,key22):value ...}
在实际访问字典里的值时的具体形式如下所示(以第一个键为例):
dict[key11,key12]
或者是:
dict[(key11,key12)]
以下是实际例子:
多值
在一个键值对应多个值时,格式:
dict={key1:(value1,value2 ..), key2:(value1,value2 ...) ...}
访问字典里的值的格式如下:
dict[key]
或者
dict[key][index]
循环赋值(重点)
语法结构如以下实例所示
总结:
通过以上的说明,可以知道在字典的定义中, 冒号( : ) 号前后是分别是一个整体,即使用小括号()将冒号前后部分分别包括起来,在访问字典值时,最好把键放在小括号内成为一个整体。
键值相同的多个键值对
即在字典中,有至少两个成员的键相同,但是键对应的值是不同的,格式如下:
dict={ key1: value1
key1: vaklue2,
... }
在这种形式形式中在后来赋给键的值将成为键的真实值。
使用列表、字典作为字典的值
格式
dict={ key1:(key11:value,key12:value) ,
key2:(key21:value,key22:value)
}
访问字典值得格式(以第一个键为例):
dict[key1][key11]
实际例子如下所示:
以上就是小编为大家带来的python字典多键值及重复键值的使用方法(详解)全部内容了,希望大家多多支持脚本之家~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10