京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python的Bottle框架的一些使用技巧介绍
之前对bottle做过不少的介绍,也写过一些文章来说明bottle的缺点,最近发现其实之前有些地方说的不太公平,所以趁此机会也来更正一下。
bottle是支持类似flask url_for的语法的,具体使用方法在下文介绍
bottle的request.query之类的参数默认是str类型,也是有原因的,比如我在给google做代理的时候,编码就不一定是utf8的,如果强制转化utf8就会报错
之前的bug也得到了修正,比如mount(‘/x',app)之后,/x/和/x都可以访问到
OK,现在正式进入主题,我们来介绍一些bottle的一些高级使用
一. 智能创建url
这部分在bottle的文档上是没有介绍的(其实bottle明明实现了很多贴心的功能,不知道为啥都不写在文档上)。
在Bottle类里,有一个成员函数:
def get_url(self, routename, **kargs):
""" Return a string that matches a named route """
scriptname = request.environ.get('SCRIPT_NAME', '').strip('/') + '/'
location = self.router.build(routename, **kargs).lstrip('/')
return urljoin(urljoin('/', scriptname), location)
def get_url(self, routename, **kargs):
""" Return a string that matches a named route """
scriptname = request.environ.get('SCRIPT_NAME', '').strip('/') + '/'
location = self.router.build(routename, **kargs).lstrip('/')
return urljoin(urljoin('/', scriptname), location)
那么这个routename是哪里来的呢?看 route 装饰器的参数:
其中的name参数就是routename(这里不得不说一下,这种方式比flask要好些,要用才指定name,而不需要为了实现url_for,把整个框架都实现的很复杂)
所以看到这里大家也就明白了,bottle的url生成器是绑定在Bottle实例上的,所以跨实例访问默认是做不到的。
而可能由于bottle所推崇的micro化,所以其源码中特意对默认Bottle示例包装出了一个函数:
这样做的好处是,如果工程只用到默认的Bottle实例的话,在模板中就可以直接使用url,而不必再多传个Bottle实例进去。
更正一下,bottle的get_url是不能跨app调用的,比如被mount的app调用主app的get_url会错掉,因为此时的SCRIPT_NAME是当前页的path,所以拼装起来会乱掉,所以就不要尝试了。
但是怎么才能让模板能够访问到local变量呢?我们接下来介绍
二. 给模板指定默认的变量
因为笔者用的最多的是jinja2,所以模板相关的介绍都是以jinja2为例子.
由于bottle的很多实例都是使用的代理模式,如request,response,local,所以我们可以放心的将这些变量传入到模板默认变量里去。
代码也很简单:
有兴趣的话,大家也可以去直接看一下源码,很好懂
三. 给模板增加filters
还是以jinja2为例,直接给出代码如下:
OK,一共就是这些,这里基于的bottle版本是 0.10.9,如果有不相符的地方,请查看bottle版本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21