
Python的Bottle框架的一些使用技巧介绍
之前对bottle做过不少的介绍,也写过一些文章来说明bottle的缺点,最近发现其实之前有些地方说的不太公平,所以趁此机会也来更正一下。
bottle是支持类似flask url_for的语法的,具体使用方法在下文介绍
bottle的request.query之类的参数默认是str类型,也是有原因的,比如我在给google做代理的时候,编码就不一定是utf8的,如果强制转化utf8就会报错
之前的bug也得到了修正,比如mount(‘/x',app)之后,/x/和/x都可以访问到
OK,现在正式进入主题,我们来介绍一些bottle的一些高级使用
一. 智能创建url
这部分在bottle的文档上是没有介绍的(其实bottle明明实现了很多贴心的功能,不知道为啥都不写在文档上)。
在Bottle类里,有一个成员函数:
def get_url(self, routename, **kargs):
""" Return a string that matches a named route """
scriptname = request.environ.get('SCRIPT_NAME', '').strip('/') + '/'
location = self.router.build(routename, **kargs).lstrip('/')
return urljoin(urljoin('/', scriptname), location)
def get_url(self, routename, **kargs):
""" Return a string that matches a named route """
scriptname = request.environ.get('SCRIPT_NAME', '').strip('/') + '/'
location = self.router.build(routename, **kargs).lstrip('/')
return urljoin(urljoin('/', scriptname), location)
那么这个routename是哪里来的呢?看 route 装饰器的参数:
其中的name参数就是routename(这里不得不说一下,这种方式比flask要好些,要用才指定name,而不需要为了实现url_for,把整个框架都实现的很复杂)
所以看到这里大家也就明白了,bottle的url生成器是绑定在Bottle实例上的,所以跨实例访问默认是做不到的。
而可能由于bottle所推崇的micro化,所以其源码中特意对默认Bottle示例包装出了一个函数:
这样做的好处是,如果工程只用到默认的Bottle实例的话,在模板中就可以直接使用url,而不必再多传个Bottle实例进去。
更正一下,bottle的get_url是不能跨app调用的,比如被mount的app调用主app的get_url会错掉,因为此时的SCRIPT_NAME是当前页的path,所以拼装起来会乱掉,所以就不要尝试了。
但是怎么才能让模板能够访问到local变量呢?我们接下来介绍
二. 给模板指定默认的变量
因为笔者用的最多的是jinja2,所以模板相关的介绍都是以jinja2为例子.
由于bottle的很多实例都是使用的代理模式,如request,response,local,所以我们可以放心的将这些变量传入到模板默认变量里去。
代码也很简单:
有兴趣的话,大家也可以去直接看一下源码,很好懂
三. 给模板增加filters
还是以jinja2为例,直接给出代码如下:
OK,一共就是这些,这里基于的bottle版本是 0.10.9,如果有不相符的地方,请查看bottle版本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09