京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新零售的大数据之路: 不是分析,而是应用
在我们分析过的大型线下零售业数据里,有销售额位列北京TOP10的大型百货商场以及北京排名前列的奥特莱斯,其数据量包含了上千万笔交易,以及数百个品牌,上百万人的交易细节。毫无疑问,这是个非常有意思的分析对象,分析出的结果也像万棱镜一样丰富多彩: 有商品品类的交易特点,有服装品牌的促销效果,有客流涨落的时间规律,也有每个会员的购买特性,甚至还有天气因素对商品销售的影响,如果把这些分析结果都写在A4纸上,恐怕要数百页之多。
如果作为一个数据分析公司, 我们会直接把这个详尽的分析报告打印成为精美的画册,里面包含漂亮的图表,严谨的分析说明,以及一些营销建议 --- 这是一份尽职尽责的分析报告,既展现了我们领先的12维度零售数据分析技术,也体现了我们对于线下零售业的深度理解。
不过, 这不够,因为我们的客户一定会问一个问题:“那么我们应该如何去做呢?”
是的, 面对着几百页厚的分析报告,即便是从报告中建议的优先级工作开展,也是一件繁重的工作,并且把数据分析的结果和线下营销的特点结合起来有很多挑战。
首先,线下营销并不具备电商的宣传渠道方便性。 对于电商而言,发布一个促销活动只要在首页或者促销栏更新一下图片就可以了。而对于线下零售商来说,这是个很难的多选题,即使使用广告都是一个选择的难题: 电梯广告,交通广告,还是微信朋友圈广告?哪个更有效?
其次,对于受众圈层的定位与分层。线下消费者与商业体的联系通常是一张实体会员卡,而这个会员卡在使用时无法做到像电商购物时使用登录限制所保证的精准度,以至于经常出现一个中年定位的会员卡呈现的是青年偏好的购买行为。 因此,在定位一些符合促销条件的消费者时, 往往不仅需要数据分析,还要进行一些模糊的推理性计算,以精准定位客群。
最后,对于各种促销手段效果的评估也是挑战。电商在采集数据时的平台优势可以保证对于促销效果的监控是全链条的,而线下场景则无法实现这个完整链条。线下零售商所使用的最先进的面部识别技术也无法准确捕捉到客户是谁 -- 如果可以-- 那么成本就不是商业体可以承担的了,因此需要巧妙的技术方法来评估促销的最终效果。
因此,如果一家数据分析公司定位于把分析结果提供给线下零售伙伴,其实这个工作最难的部分还没有开始。只有帮助零售伙伴完成从数据分析到数据应用的整个工作流程,才能真正把数据价值发挥出来。根据我们的经验,完成数据分析到数据应用至少还有以下的技术环节:
第一.数据分析平台与数据营销平台的对接。只有把数据分析结果无缝地连接于数据营销平台,才能高效地让分析效果与营销工作结合在一起。这样无需复杂的数据分析师与数据营销团队结合,普通营销人员也可以完成数据营销的筹备与推进工作。
第二.数据营销平台与销售平台的对接。如果没有对于销售平台的支持,那么数据营销将是自说自话,无法体现出数据营销的高效率与精度。
第三.数据平台与消费者体验平台的对接。无论促销的效果有多好,不持续提供让客户满意的体验,终究无法保证长期的竞争力。
而以上所涉及的技术创新与商业环节改造,并非是一日之功,可以说是巨大的挑战,这需要对于数据分析及应用技术以及商业零售知识的综合创新,目前完全切换到数据应用模式的北京商业体也只有斯普瑞斯奥莱这一家线下零售商。通过与蜜枣网的创新数据应用合作,斯普瑞斯奥莱保持了持续的高增长,成为北京东部成长最快速的商业体,同时在会员忠诚度与活跃度方面大幅领先于同业。
斯普瑞斯在与蜜枣网合作前,也购买了商业智慧分析系统,但发现传统的商业智慧系统不仅分析方法相对落后,仅仅提供基础的销售数据综合分析,不能从消费者体验角度提供更好的分析,而且无法直接与营销系统对接,从而使数据分析系统成为割裂的环节,并不能很好地支持营销工作。
而斯普瑞斯奥莱最终选择蜜枣网的全数据平台,就是因为该平台可以把数据分析与数据应用无缝连接起来,销售数据与消费者数据一经产生,即可以根据分析的结果制定相应的营销活动,并通过同一平台直接发送出去,大大提高了营销的效率与效果。
新零售时代,技术有非常丰富的选择,而只有把技术应用于实际的需求环节,技术才有真正的价值。因此,数据不是为分析而生,数据是为应用而生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15