京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细操作:样本均数间的多重比较
下面我们用例子来探讨:方差分析得出各组总体均数间的差异有统计学意义之后,如何进行样本均数间的多重比较。
一、问题与数据
为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施,治疗后ALT水平(U/L)如下。试问应用三种治疗措施后,患者的ALT水平是否有差异?如果有差异,又是哪两个组间的ALT水平存在差异?
表1. 三组患者治疗后的ALT水平(U/L)
二、对数据结构的分析
整个数据资料涉及三组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。
我们已经知道可以采用单因素方差分析的方法,比较三组总体均数之间的差异是否具有统计学意义,但如果差异有统计学意义,并不意味着任意两组之间的均数差异都有统计学意义。想进一步了解哪两个组间的ALT水平存在差异,还需要做样本均数间的多重比较。
三、SPSS分析方法
1. 数据录入SPSS
2. 进行单因素方差分析:
(1)Analyze → General Linear Model → Univariate;
(2)主对话框设置:分析变量(ALT)送入Dependent Variable 框中→分组变量(Group)送入Fixed Factor(s) 框中;
(3)Options设置:勾选Descriptive statistics(统计描述)和Homogeneity tests(方差齐性检验)→Continue。
3. 均数间的多重比较:
(1)点击Post Hoc按钮,将Group送入Post Hoc Tests for框中→在Equal Variances Assumed(方差齐)框中,勾选几种常用的多重比较方法:
LSD、S-N-K、Bonferroni、Tukey、Šidák、Scheffé's、Dunnett
(2)在Dunnett选项下面,Control Category选择First(以A组作为对照组),Test框中勾选2-sided→Continue→OK。
四、结果解读
Tests of Between-Subjects Effects表格给出了方差分析的结果。在方差齐的条件下,Group一行结果显示,F值=68.810, P(Sig.)<0.001。
Multiple Comparisons表格给出了部分方法的多重比较结果,分别列出了每个组和其他组比较的均数的差值(Mean Difference (I-J))、标准误(Std. Error)、P值(Sig.)和均数差值的95%置信区间(95% Confidence Interval)。检验水准α设为0.05,组间差异有统计学意义的结果已用*标出。
不同多重比较方法的选择,需要结合研究设计和每个方法各自的特点及适用条件。我们以Bonferroni法和Dunnett法的结果为例,进行解读:
Bonferroni法结果显示,A组与B组的ALT水平相比,Mean Difference=-15.160 U/L,P(Sig.)<0.001;A组与C组相比,Mean Difference=1.133 U/L,P(Sig.)=1.000;B组与C组相比,Mean Difference=16.293 U/L,P(Sig.)<0.001。
Bonferroni法和Šidák法的检验原理为根据需要比较的次数来调整检验水准。以Bonferroni法为例,调整的方法有两种:1、将α’=α/m作为检验水准的调整值(m为共需比较的次数,假设m=C32=3,α’=0.05/3=0.017),两两比较得出的P值与α’进行比较,即P<0.017时才能拒绝零假设;2、将计算得到的P值扩大为原来的m倍为P’,然后将P’与0.05比较,即P’<0.05时拒绝零假设。SPSS采取的是第二种方法,直接为我们给出了Bonferroni法和Šidák法调整后的P’值,故将调整后的P’值与检验水准0.05比较即可,不用再自行计算。
Dunnett法结果显示,B组与A组的ALT水平相比,Mean Difference=15.160 U/L,P(Sig.)<0.001;C组与A组相比,Mean Difference=-1.133 U/L,P(Sig.)=0.688。
Homogeneous Subsets表格同样给出了部分方法的多重比较结果。我们以Student-Newman-Keuls(S-N-K)法的结果为例,进行解读:
C组ALT水平的均数为12.147 U/L,A组均数为13.280 U/L,C组和A组被分到一个亚组(Subset 1),P(Sig.)=0.469;B组均数为28.440 U/L,被单独分到另一个亚组(Subset 2),P(Sig.)>0.999。
五、撰写结论
A组患者ALT水平为(13.28 ± 4.39)U/L,B组患者ALT水平为(28.44 ± 3.65)U/L,C组患者ALT水平为(12.15 ± 4.64)U/L,A、B、C三种治疗措施对患者ALT水平的影响差异具有统计学意义(F=68.810,P<0.001)。其中,B组与A组,B组与C组间患者的ALT水平差异均具有统计学意义(P<0.001),A组与C组间患者的ALT水平差异无统计学意义(P>0.05)。
六、延伸阅读
SPSS中均数间多重比较方法可以分为两大类,包括多重两两比较的检验(Multiple Comparisons)和对极差进行亚组同质性的检验(Homogeneous Subsets),二者结果的表现形式有所不同,如本例结果所示。
两两比较检验给出了每个组和其他组比较的结果。亚组同质性检验则先按照每个组均数的大小进行排序,将组间均数差异无统计学意义的均数分到一个亚组,这样会形成若干个亚组,同一亚组内的均数差异无统计学意义,不同亚组间的均数差异有统计学意义。
本例中,C组和A组被分到一个亚组,说明两组间均数差异无统计学意义;B组被单独分到一个亚组,说明B组与A组、B组与C组间的均数差异都有统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23