京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言:排序问题
数据排序
1、sort(),rank(),order()函数
Sort
排序(默认升序,decreasing=T时为降序)
Order
排序(默认升序,decreasing=T时为降序)
在R中,和排序相关的函数主要有三个:sort(),rank(),order()。
sort(x)是对向量x进行排序,返回值排序后的数值向量。rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”。而order()的返回值是对应“排名”的元素所在向量中的位置。
下面以一小段R代码来举例说明:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
x<-c(97,93,85,74,32,100,99,67)
sort(x)
[1] 32 67 74 85 93 97 99 100
order(x) #order()的返回值是各个排名的学生成绩所在向量中的位置
[1] 5 8 4 3 2 1 7 6
rank(x) #rank()的返回值是这组学生所对应的排名
[1] 6 5 4 3 1 8 7 2
深入理解一下:
sort()在单变量排序中,效果较好;
order()≈原序号(sort()) 因为可以标记排序好之后的下标,在数据框中的排序操作,实用性超强,可以实现:
1、整个数据集按照某个变量(比如:按月份大小)排序;
2、整个数据集其中某个变量依据第二个变量(比如:月份)排序。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
iris;iris[1:10,]
names(iris)
#单数据列,两者相同
sort(iris$Sepal.Length)
iris$Sepal.Length[order(iris$Sepal.Length)]
#多数据列,order有奇效
iris[order(iris$setosa),] #按照setosa的大小,重排整个数据集
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
iris[order(iris$setosa),]$Sepal.Length #与上句异曲同工
与which有一些地方的相似,which可以实现返回服从条件观测的行数。which又与subset子集筛选有关。(详见which、subset子集筛选用法)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$V1[which(data$V2<0)] #筛选出V1中,V2小于0的数字,跟order的作用些许相似
#order用法
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
2、dplyr包的一些应用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#dplyr中基本函数 arrange——数据排序
Hdma_dat[order(Hdma_dat$survived),] #传统方法用order排序
arrange(Hdma_dat,survived) #将survived从小到大排序
arrange(Hdma_dat,desc(survived) #将survived从大到小排序
arrange(Hdma_dat,pclass,desc(survived) #先将pclass从小到大排序,再在那个数据基础上让survived从大到小排序
使用场景(我经常搞错...):
譬如我想知道一组数:b = c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597)
场景一:最大值的位置信息,我想拿到的数据是每个数值对应的大小次序,升序,理应(3 4.5 1 2 4.5)
那么:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
rank(b)
order(b)
如果降序,就不一样了:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
> order(c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597) ,decreasing = T)
[1] 2 5 1 4 3
order=rank+sort功能=次序信息(rank)+次序排序(sort)
接下来的两个用法是我很容易搞错的:
我想拿到 降序 + 不排序的次序信息,rank不适合;
降序 + 排序的次序信息,order适合
若:
(1)按照某行顺序从大到小重排另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)]
(2)按照某行最大值对位的另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)[1] ]
第二种办法:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[rank(data$x2) == max值]
注意区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29