京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas批量删除重复超过90%的变量
22年前的今天我的妈咪把我带来这个世界,费尽心思把我养到这么大,我就是4月份出生的大白羊,我的生日愿望呢,就是想有个大神在留言板块教我一个怎么识别组合变量更好解释因变量的方法,譬如我怎么知道年龄和婚姻两个变量在一起的效果比单个的效果还要好,但是年龄和性别组合效果并没有那么好。跪求大神实现我的生日愿望吧。
今天还是没有要更新信用评分的内容,更新的内容是关于变量处理中的问题,之前的文章中有过变量处理的章节,这篇文章是对那篇的补充,之前讲过我会把缺失值达到70%的变量删掉。我漏掉一个问题就是变量的重复值达到90%也应该删掉,譬如一个变量有5中情况:ABCDE,但是A的情况的占比就达到90%的时候,除非这个变量剩下的10%全部都是逾期的,不然这样的变量是没有意义,所以今天分享的代码就是批量找出这些变量并在原数据集中删掉。这次的代码也是陈先生提供的。我在陈先生代码的基础上做了一些改动并调试了。
话不多说,上代码:
%macrovar_namelist(data=,tarvar=,dsor=);
%letlib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql ;
create table &dsor.as
select name
from sashelp.VCOLUMN
where left(libname)="&lib."and left(memname)="&dname."and lowcase(name)^=lowcase("&tarvar.");
quit;
%mend;
%macrotest(data,tarvar,data_result,data_drop,rate);
proc datasets lib=work;
delete base;
run;
data base;
length variable$100.;
run;
%var_namelist(data=&data.,/*coltype=num,*/tarvar=&tarvar.,dsor=aa);
data _null_;
set aa;
call symput(compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put&n.;
%doi=1%to&n.;
%put&&var&i.;
proc freq data=&data.(keep=&&var&i.) noprint;
tables &&var&i./out=PERCENT_&&var&i.;
/*(keep=PERCENT)*/
run;
proc sql;
select max(PERCENT) into: max_percent from
PERCENT_&&var&i.;
quit;
%if&max_percent>&rate.%then%do;
data next;
variable="&&var&i.";
run;
proc append base=base data=next force;
run;
%end;
proc datasets lib=work noprint;
delete PERCENT_&&var&i.;
run;
%end;
data base;
set base(where=(variable^=''));
run;
proc transpose data=base out=base1(drop=_name_);
id variable;
run;
/*这步是删除单一变量超过90的重复值的缺失值的可以按照这个写下*/
proc sql noprint;
select name into :var_list separated by' '
from sashelp.VCOLUMN
where upcase(left(libname))="WORK"and UPCASE(left(memname))="BASE1";
quit;
%PUT&var_num1.;
data &data_result.;
set &data.;
drop &var_list.;
run;
data &data_drop.;
set &data.;
keep &tarvar.&var_list.;
run;
%mend;
第一宏不用管,那是为了嵌套在第二个宏里面的。那么接下来介绍下这个宏怎么用。
test(data,tarvar,data_result,data_drop,rate);
data:填入的原数据集。
Tarvar:填入你不想要统计的变量。可以是你的主键也可以是你的因变量,随便你。像我填入的是因变量。
data_result:结果数据集,你的结果数据想叫什么就填什么把。
Data_drop:删掉的变量存放的数据集,给你检查一下有没有错删变量。
Rate:填入的是你觉得重复值达到多少的时候就删掉。我建议的80-90。
下周分享的一个变量人工分段的一个代码。这个代码是我当下除了最优分段之外觉得好用的代码,因为最优分段需要做异常值的检查。有时候异常值检查不好,容易分组的分的不好。这是我个人的经验哈,对于变量分段我之前很崇尚自动分组,我觉得那么多的变量,我一个一个的去细看这无非浪费我的时间,但是我失败的经验告诉我,模型的过程每一步的都应该细致并且仔细,该人工的时候还是要人工,如果全部可以全自动化,那么只要自动运行代码就可以了,谁都可以建模了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23