京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—基于密度的聚类算法DBSCAN
一、基于密度的聚类算法的概述
我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别。
基于密度的聚类算法主要的目标是寻找被低密度区域分离的高密度区域。与基于距离的聚类算法不同的是,基于距离的聚类算法的聚类结果是球状的簇,而基于密度的聚类算法可以发现任意形状的聚类,这对于带有噪音点的数据起着重要的作用。
二、DBSCAN算法的原理
1、基本概念
DBSCAN(Density-Based Spatial Clustering of Application with Noise)是一种典型的基于密度的聚类算法,在DBSCAN算法中将数据点分为一下三类:
核心点。在半径Eps内含有超过MinPts数目的点
边界点。在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内
噪音点。既不是核心点也不是边界点的点
在这里有两个量,一个是半径Eps,另一个是指定的数目MinPts。
一些其他的概念
Eps邻域。简单来讲就是与点p的距离小于等于Eps的所有的点的集合,可以表示为
。
直接密度可达。如果p在核心对象q的Eps邻域内,则称对象p从对象q出发是直接密度可达的。
密度可达。对于对象链:
,
是从
关于Eps和MinPts直接密度可达的,则对象
是从对象
关于Eps和MinPts密度可达的。
2、算法流程

(流程)
三、实验仿真
在实验中使用了两个测试数据集,数据集的原始图像如下:

(数据集1)

(数据集2)
数据集1相对比较简单。显然我们可以发现数据集1共有两个类,数据集2有四个类,下面我们通过DBSCAN算法实现数据点的聚类:
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% DBSCAN
clear all;
clc;
%% 导入数据集
% data = load('testData.txt');
data = load('testData_2.txt');
% 定义参数Eps和MinPts
MinPts = 5;
Eps = epsilon(data, MinPts);
[m,n] = size(data);%得到数据的大小
x = [(1:m)' data];
[m,n] = size(x);%重新计算数据集的大小
types = zeros(1,m);%用于区分核心点1,边界点0和噪音点-1
dealed = zeros(m,1);%用于判断该点是否处理过,0表示未处理过
dis = calDistance(x(:,2:n));
number = 1;%用于标记类
%% 对每一个点进行处理
for i = 1:m
%找到未处理的点
if dealed(i) == 0
xTemp = x(i,:);
D = dis(i,:);%取得第i个点到其他所有点的距离
ind = find(D<=Eps);%找到半径Eps内的所有点
%% 区分点的类型
%边界点
if length(ind) > 1 && length(ind) < MinPts+1
types(i) = 0;
class(i) = 0;
end
%噪音点
if length(ind) == 1
types(i) = -1;
class(i) = -1;
dealed(i) = 1;
end
%核心点(此处是关键步骤)
if length(ind) >= MinPts+1
types(xTemp(1,1)) = 1;
class(ind) = number;
% 判断核心点是否密度可达
while ~isempty(ind)
yTemp = x(ind(1),:);
dealed(ind(1)) = 1;
ind(1) = [];
D = dis(yTemp(1,1),:);%找到与ind(1)之间的距离
ind_1 = find(D<=Eps);
if length(ind_1)>1%处理非噪音点
class(ind_1) = number;
if length(ind_1) >= MinPts+1
types(yTemp(1,1)) = 1;
else
types(yTemp(1,1)) = 0;
end
for j=1:length(ind_1)
if dealed(ind_1(j)) == 0
dealed(ind_1(j)) = 1;
ind=[ind ind_1(j)];
class(ind_1(j))=number;
end
end
end
end
number = number + 1;
end
end
end
% 最后处理所有未分类的点为噪音点
ind_2 = find(class==0);
class(ind_2) = -1;
types(ind_2) = -1;
%% 画出最终的聚类图
hold on
for i = 1:m
if class(i) == -1
plot(data(i,1),data(i,2),'.r');
elseif class(i) == 1
if types(i) == 1
plot(data(i,1),data(i,2),'+b');
else
plot(data(i,1),data(i,2),'.b');
end
elseif class(i) == 2
if types(i) == 1
plot(data(i,1),data(i,2),'+g');
else
plot(data(i,1),data(i,2),'.g');
end
elseif class(i) == 3
if types(i) == 1
plot(data(i,1),data(i,2),'+c');
else
plot(data(i,1),data(i,2),'.c');
end
else
if types(i) == 1
plot(data(i,1),data(i,2),'+k');
else
plot(data(i,1),data(i,2),'.k');
end
end
end
hold off
距离计算函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 计算矩阵中点与点之间的距离
function [ dis ] = calDistance( x )
[m,n] = size(x);
dis = zeros(m,m);
for i = 1:m
for j = i:m
%计算点i和点j之间的欧式距离
tmp =0;
for k = 1:n
tmp = tmp+(x(i,k)-x(j,k)).^2;
end
dis(i,j) = sqrt(tmp);
dis(j,i) = dis(i,j);
end
end
end
epsilon函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [Eps]=epsilon(x,k)
% Function: [Eps]=epsilon(x,k)
%
% Aim:
% Analytical way of estimating neighborhood radius for DBSCAN
%
% Input:
% x - data matrix (m,n); m-objects, n-variables
% k - number of objects in a neighborhood of an object
% (minimal number of objects considered as a cluster)
[m,n]=size(x);
Eps=((prod(max(x)-min(x))*k*gamma(.5*n+1))/(m*sqrt(pi.^n))).^(1/n);
最终的结果

(数据集1的聚类结果)

(数据集2的聚类结果)
在上面的结果中,红色的点代表的是噪音点,点代表的是边界点,十字代表的是核心点。不同的颜色代表着不同的类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17